[go: up one dir, main page]

login
Revision History for A249095 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Triangle read by rows: interleaving successive pairs of rows of Pascal's triangle.
(history; published version)
#11 by Joerg Arndt at Mon Dec 01 02:51:58 EST 2014
STATUS

reviewed

approved

#10 by Wesley Ivan Hurt at Sun Nov 30 23:36:12 EST 2014
STATUS

proposed

reviewed

#9 by Wesley Ivan Hurt at Sun Nov 30 23:36:08 EST 2014
STATUS

editing

proposed

#8 by Wesley Ivan Hurt at Sun Nov 30 23:35:59 EST 2014
MATHEMATICA

t[n_, k_] := If[n > 1 && 1 < k < 2*n - 1, If[EvenQ[k], t[n - 1, k] + t[n - 1, k - 2], t[n - 1, k - 1]], 1]; Grid[Table[t[n, k], {n, 0, 9}, {k, 0, 2*n}]] (* - __L. Edson Jeffery_, Nov 30 2014 *)

STATUS

proposed

editing

#7 by L. Edson Jeffery at Sun Nov 30 22:57:29 EST 2014
STATUS

editing

proposed

#6 by L. Edson Jeffery at Sun Nov 30 22:54:09 EST 2014
MATHEMATICA

t[n_, k_] := If[n > 1 && 1 < k < 2*n - 1, If[EvenQ[k], t[n - 1, k] + t[n - 1, k - 2], t[n - 1, k - 1]], 1]; Grid[Table[t[n, k], {n, 0, 9}, {k, 0, 2*n}]] (* - L. Edson Jeffery, Nov 30 2014 *)

STATUS

approved

editing

#5 by Reinhard Zumkeller at Sat Nov 15 06:55:33 EST 2014
STATUS

editing

approved

#4 by Reinhard Zumkeller at Sat Nov 15 00:44:05 EST 2014
COMMENTS

A249304(n) = number of even terms in row n.;

T(n,k) mod 2 = A249133(n,k).

CROSSREFS
#3 by Reinhard Zumkeller at Fri Nov 14 12:27:13 EST 2014
COMMENTS

Length of row n = 2*n+1;

T(n,2*k) = A007318(n,k), 0 <= k <= n;

T(n,2*k+1) = A007318(n-1,k-1), n > 0 and 0 <= k < n;

T(n,k) = T(n-1,k-2) + T(n-1,k), n > 0 and 2 <= k <= n-2;

T(n,2*k) = T(n-1,2*k) + T(n-1,2*(k-1)), k = 0..n;

T(n,2*k+1) = T(n-2,2*k), k = 0..n-1;

T(n,n) = A128014(n);

A105321(n) = number of odd terms in row n;

A249304(n) = number of even terms in row n.

LINKS

Reinhard Zumkeller, <a href="/A249095/b249095.txt">Table of n, a(n) for Rows n = 0..10200125 of triangle, flattened</a>

<a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>

FORMULA

T(n,2*k) = T(n,2*k-1) + T(n,2*k+1), 0 < k < n.

EXAMPLE

The triangle begins:

. 0: 1

. 1: 1 1 1

. 2: 1 1 2 1 1

. 3: 1 1 3 2 3 1 1

. 4: 1 1 4 3 6 3 4 1 1

. 5: 1 1 5 4 10 6 10 4 5 1 1

. 6: 1 1 6 5 15 10 20 10 15 5 6 1 1

. 7: 1 1 7 6 21 15 35 20 35 15 21 6 7 1 1

. 8: 1 1 8 7 28 21 56 35 70 35 56 21 28 7 8 1 1

. 9: 1 1 9 8 36 28 84 56 126 70 126 56 84 28 36 8 9 1 1 .

PROG

(Haskell)

import Data.List (transpose)

a249095 n k = a249095_tabf !! n !! k

a249095_row n = a249095_tabf !! n

a249095_tabf = [1] : map (concat . transpose)

(zipWith ((. return) . (:)) (tail a007318_tabl) a007318_tabl)

CROSSREFS

Cf. A005408 (row lengths), A128014 (central terms), A003945 (row sums), A249111 (partial sums per row), A007318 (Pascal).

Cf. A105321, A249304, A249307.

KEYWORD

nonn,changed,tabf

#2 by Reinhard Zumkeller at Fri Nov 14 11:59:01 EST 2014
NAME

allocated for Reinhard ZumkellerTriangle read by rows: interleaving successive pairs of rows of Pascal's triangle.

DATA

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 4, 3, 6, 3, 4, 1, 1, 1, 1, 5, 4, 10, 6, 10, 4, 5, 1, 1, 1, 1, 6, 5, 15, 10, 20, 10, 15, 5, 6, 1, 1, 1, 1, 7, 6, 21, 15, 35, 20, 35, 15, 21, 6, 7, 1, 1, 1, 1, 8, 7, 28, 21, 56, 35, 70, 35, 56, 21, 28, 7, 8, 1, 1

OFFSET

0,7

LINKS

Reinhard Zumkeller, <a href="/A249095/b249095.txt">Table of n, a(n) for n = 0..10200</a>

KEYWORD

allocated

nonn

AUTHOR

Reinhard Zumkeller, Nov 14 2014

STATUS

approved

editing