editing
approved
editing
approved
lpim[n_]:=Module[{m=1, p2=EulerPhi[n]^2}, While[Mod[p2+EulerPhi[m]^2, m+n]!=0, m++]; m]; Array[lpim, 60] (* Harvey P. Dale, Nov 19 2020 *)
approved
editing
proposed
approved
editing
proposed
Conjecture: a(n) exists for any n > 0. Moreover, a(n) <= n^2 except for n = 33.
a(5) = 15 since 15 + 5 = 20 divides phi(15)^2 + phi(5)^2 = 8^2 + 4^2 = 80.
a(33) = 1523 since 1523 + 33 = 1556 divides phi(1523)^2 + phi(33)^2 = 1522^2 + 20^2 = 2316884 = 1489*1556.
proposed
editing
editing
proposed
Least positive integer m such that m + n divides phi(m)^2 + phi(n)^2, where phi(.) is Euler's totient function.
Conjecture: a(n) exists for any n > 0.
Zhi-Wei Sun, <a href="http://arxiv.org/abs/1409.5685">A new theorem on the prime-counting function</a>, arXiv:1409.5685, 2014.
Do[m=1; Label[aa]; If[Mod[EulerPhi[m]^2+EulerPhi[n]^2, m+n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]
allocated for Zhi-Wei Sun
Least positive integer m such that m + n divides phi(m)^2 + phi(n)^2, where phi(.) is Euler's totient function.
1, 3, 2, 1, 15, 14, 3, 8, 9, 30, 30, 14, 7, 6, 5, 9, 3, 8, 55, 60, 9, 4, 83, 28, 25, 71, 9, 1, 24, 4, 43, 32, 1523, 30, 13, 9, 35, 3, 21, 24, 17, 18, 7, 8, 99, 166, 5, 4, 3, 32, 205, 6, 36, 18, 19, 19, 40, 78, 9, 8
1,2
Conjecture: a(n) exists for any n > 0.
Zhi-Wei Sun, <a href="http://arxiv.org/abs/1409.5685">A new theorem on the prime-counting function</a>, arXiv:1409.5685, 2014.
Do[m=1; Label[aa]; If[Mod[EulerPhi[m]^2+EulerPhi[n]^2, m+n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]
allocated
nonn
Zhi-Wei Sun, Sep 29 2014
approved
editing
allocated for Zhi-Wei Sun
allocated
approved