Vladimir Shevelev , <a href="http://list.seqfan.eu/pipermailoldermail/seqfan/2014-September/013643.html">A classification of the positive integers over primes</a>
Vladimir Shevelev , <a href="http://list.seqfan.eu/pipermailoldermail/seqfan/2014-September/013643.html">A classification of the positive integers over primes</a>
reviewed
approved
proposed
reviewed
editing
proposed
Indranil Ghosh, <a href="/A247977/b247977.txt">Table of n, a(n) for n = 1..10000</a>
lpf[n_]:= FactorInteger[n][[1, 1]]; Table[If[n==1 || PrimeQ[n], 0, PrimePi[Sqrt[n]] - PrimePi[lpfFactorInteger[n][[1, 1]]] + 1], {n, 1, 125}] (* Indranil Ghosh, Mar 08 2017 *)
(PARI) lpffor(n=1, 125, print1(if(n==1 || isprime(n), 0, primepi(sqrt(n) = ) - primepi(vecmin(factor(n)[, 1]); ) + 1), ", ")) \\ _Indranil Ghosh_, Mar 08 2017
for(n=1, 125, print1(if(n==1 || isprime(n), 0, primepi(sqrt(n)) - primepi(lpf(n)) + 1), ", ")) \\ Indranil Ghosh, Mar 08 2017
(PARI) lpf(n) = vecmin(factor(n)[, 1]);
for(n=1, 125, print1(if(n==1 || isprime(n), 0, primepi(sqrt(n)) - primepi(lpf(n)) + 1), ", ")) \\ Indranil Ghosh, Mar 08 2017
lpf[n_]:= FactorInteger[n][[1, 1]]; Table[If[n==1 || PrimeQ[n], 0, PrimePi[Sqrt[n]] - PrimePi[lpf[n]] + 1], {n, 1, 125}] (* Indranil Ghosh, Mar 08 2017 *)
approved
editing
editing
approved
Preprimes of k-th kind are defined in comment of in A247395.
approved
editing
proposed
approved