editing
approved
editing
approved
E.g.f.: 1/(21-exp(x)+Sum_{j>=1..56} x^j/j!) - 1/(21-exp(x)+Sum_{j>=1..67} x^j/j!).
approved
editing
editing
approved
allocated for Alois P. Heinz
Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 6.
1, 0, 0, 0, 0, 0, 924, 3432, 6006, 10010, 16016, 24752, 17190264, 139729800, 748339320, 2910015528, 9794896188, 30251595066, 2396910064472, 33228482071400, 291616291666700, 2036218597884900, 11895959650285620, 61536913327513260, 1662981928016982300
6,7
E.g.f.: 1/(2-exp(x)+Sum_{j=1..5} x^j/j!) -1/(2-exp(x)+Sum_{j=1..6} x^j/j!).
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(n, j), j=k..n))
end:
a:= n-> b(n, 6) -b(n, 7):
seq(a(n), n=6..35);
Column k=6 of A245733.
allocated
nonn
Alois P. Heinz, Aug 04 2014
approved
editing
allocated for Alois P. Heinz
allocated
approved