editing
approved
editing
approved
E.g.f.: 1/(2 + x - exp(x) + x^2/2! + x^3/3! + x^4/4! + x^5/5! + x^6/6!). - Vaclav Kotesovec, Aug 02 2014
approved
editing
editing
approved
a(n) ~ n! / ((1+r^6/6!) * r^(n+1)), where r = 3.161936258680679649... is the root of the equation 2 + r - exp(r) + r^2/2! + r^3/3! + r^4/4! + r^5/5! + r^6/6! = 0. - Vaclav Kotesovec, Aug 02 2014
E.g.f: 1/(2 + x - exp(x) + x^2/2! + x^3/3! + x^4/4! + x^5/5! + x^6/6!). - Vaclav Kotesovec, Aug 02 2014
CoefficientList[Series[1/(2 + x - E^x + x^2/2! + x^3/3! + x^4/4! + x^5/5! + x^6/6!), {x, 0, 40}], x]*Range[0, 40]! (* Vaclav Kotesovec, Aug 02 2014 *)
approved
editing
editing
approved
Alois P. Heinz, <a href="/A245792/b245792.txt">Table of n, a(n) for n = 0..400</a>
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-j)*binomial(n, j), j=7..n))
end:
seq(a(n), n=0..35);
allocated for Alois P. Heinz
Number of preferential arrangements of n labeled elements when at least k=7 elements per rank are required.
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 3433, 12871, 35751, 87517, 199785, 436697, 927657, 401005793, 3296326113, 17887397621, 80157730101, 321127444171, 1195366208091, 4226755326331, 486914893507831, 6899197122043711, 61532746814157691, 436349292456987871
0,15
Cf. column k=7 of A245732.
allocated
nonn
Alois P. Heinz, Aug 01 2014
approved
editing
allocated for Alois P. Heinz
allocated
approved