[go: up one dir, main page]

login
Revision History for A244856 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
G.f. satisfies: A(x) = (4 + A(x)^4) / (5-x).
(history; published version)
#21 by Vaclav Kotesovec at Mon Nov 27 18:18:01 EST 2017
STATUS

editing

approved

#20 by Vaclav Kotesovec at Mon Nov 27 18:17:53 EST 2017
FORMULA

a(n) ~ 2^(n/2 - 2) * 3^(3*(n-1)/4) / (sqrt(Pi) * n^(3/2) * (5*sqrt(2)*3^(3/4) - 16)^(n - 1/2)). - Vaclav Kotesovec, Nov 27 2017

#19 by Vaclav Kotesovec at Mon Nov 27 18:00:32 EST 2017
MATHEMATICA

CoefficientList[1 + InverseSeries[Series[(1+5*x - (1+x)^4)/(1+x), {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 27 2017 *)

STATUS

approved

editing

#18 by Paul D. Hanna at Thu Jul 10 14:46:15 EDT 2014
STATUS

editing

approved

#17 by Paul D. Hanna at Thu Jul 10 14:46:12 EDT 2014
NAME

G.f. satisfies: A(x) = (4 + A(x)^4) / (5-x).

FORMULA

G.f. satisfies:

(1) A(x) = 1 + Series_Reversion( (1+5*x* - (1 - 6*+x - )^4*x^2 - x^3)/(1 + x) ).

EXAMPLE

G.f.: A(x) = 1 + x + 7*x^2 + 95*x^3 + 1614*x^4 + 30718*x^5 +...

PROG

(PARI) {a(n)=polcoeff(1 + serreverse((1+5*x* - (1 - 6*+x - )^4*x^2 - x^3)/(1 + x +x*O(x^n))), n)}

CROSSREFS
STATUS

approved

editing

#16 by Paul D. Hanna at Wed Jul 09 13:46:35 EDT 2014
STATUS

editing

approved

#15 by Paul D. Hanna at Wed Jul 09 13:46:31 EDT 2014
NAME

allocated for Paul D. Hanna

G.f. satisfies: A(x) = (4 + A(x)^4) / (5-x).

DATA

1, 1, 7, 95, 1614, 30718, 626434, 13383650, 295692145, 6700461777, 154871912815, 3637093846055, 86539594779772, 2081721640140460, 50542732376144460, 1236960716959913020, 30483096737455969766, 755783491624380578998, 18839297079646725396450

OFFSET

0,3

FORMULA

G.f. satisfies:

(1) A(x) = 1 + Series_Reversion( x*(1 - 6*x - 4*x^2 - x^3)/(1 + x) ).

(2) A(x) = Sum_{n>=0} C(4*n,n)/(3*n+1) * (4 + x*A(x))^(3*n+1) / 5^(4*n+1).

(3) A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where G(x) = (4+x + G(x)^4)/5 is the g.f. of A120593.

EXAMPLE

G.f.: A(x) = 1 + x + 7*x^2 + 95*x^3 + 1614*x^4 + 30718*x^5 +...

Compare A(x)^4 to (5-x)*A(x):

A(x)^4 = 1 + 4*x + 34*x^2 + 468*x^3 + 7975*x^4 + 151976*x^5 +...

(5-x)*A(x) = 5 + 4*x + 34*x^2 + 468*x^3 + 7975*x^4 + 151976*x^5 +...

PROG

(PARI) {a(n)=polcoeff(1 + serreverse(x*(1 - 6*x - 4*x^2 - x^3)/(1 + x +x*O(x^n))), n)}

for(n=0, 30, print1(a(n), ", "))

(PARI) {a(n)=local(A=[1], Ax=1+x); for(i=1, n, A=concat(A, 0); Ax=Ser(A); A[#A]=Vec( ( Ax^4 - (5-x)*Ax ) )[#A]); A[n+1]}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Paul D. Hanna, Jul 09 2014

STATUS

approved

editing

#14 by Paul D. Hanna at Wed Jul 09 13:41:37 EDT 2014
NAME

allocated for Paul D. Hanna

KEYWORD

recycled

allocated

#13 by R. J. Mathar at Wed Jul 09 12:58:45 EDT 2014
STATUS

reviewed

approved

#12 by R. J. Mathar at Wed Jul 09 09:53:38 EDT 2014
STATUS

proposed

reviewed