proposed
approved
proposed
approved
editing
proposed
$RecursionLimit = 1000; b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + Function[{p}, If[p > n, 0, b[n - p, i, t - 1]]][Prime[i]]]]; a[n_] := b[n^2, PrimePi[n^2], 4]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Apr 15 2015, after Alois P. Heinz *)
approved
editing
editing
approved
Alois P. Heinz, <a href="/A243940/b243940.txt">Table of n, a(n) for n = 1..100</a>
with(numtheory):
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
`if`(i<1 or t<1, 0, b(n, i-1, t) +(p-> `if`(p>n, 0,
b(n-p, i, t-1)))(ithprime(i))))
end:
a:= n-> b(n^2, pi(n^2), 4):
seq(a(n), n=1..40); # Alois P. Heinz, Jun 15 2014
Partitions Number of partitions of n^2 into exactly 4 prime numbers.
0, 0, 1, 3, 5, 15, 13, 50, 24, 126, 50, 258, 78, 508, 115, 899, 176, 1562, 240, 2383, 299, 3616, 440, 5733, 547, 7585, 664, 10705, 863, 16259, 1033, 19591, 1234, 25943, 1566, 37879, 1860, 43405, 1976, 55700, 2529, 78989, 2942, 86261, 3162, 106212, 3867, 148771
proposed
editing
editing
proposed
allocated for Olivier Gérard
Partitions of n^2 into exactly 4 prime numbers.
0, 0, 1, 3, 5, 15, 13, 50, 24, 126, 50, 258, 78, 508, 115, 899, 176, 1562, 240, 2383, 299, 3616, 440, 5733, 547, 7585, 664, 10705, 863, 16259, 1033, 19591, 1234, 25943, 1566, 37879, 1860, 43405, 1976, 55700
1,4
allocated
nonn
Olivier Gérard, Jun 15 2014
approved
editing
allocated for Olivier Gérard
allocated
approved