[go: up one dir, main page]

login
Revision History for A243940 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of partitions of n^2 into exactly 4 prime numbers.
(history; published version)
#10 by Bruno Berselli at Wed Apr 15 10:02:23 EDT 2015
STATUS

proposed

approved

#9 by Jean-François Alcover at Wed Apr 15 09:59:49 EDT 2015
STATUS

editing

proposed

#8 by Jean-François Alcover at Wed Apr 15 09:59:42 EDT 2015
MATHEMATICA

$RecursionLimit = 1000; b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + Function[{p}, If[p > n, 0, b[n - p, i, t - 1]]][Prime[i]]]]; a[n_] := b[n^2, PrimePi[n^2], 4]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Apr 15 2015, after Alois P. Heinz *)

STATUS

approved

editing

#7 by Alois P. Heinz at Mon Jun 16 08:48:32 EDT 2014
STATUS

editing

approved

#6 by Alois P. Heinz at Mon Jun 16 08:48:27 EDT 2014
LINKS

Alois P. Heinz, <a href="/A243940/b243940.txt">Table of n, a(n) for n = 1..100</a>

#5 by Alois P. Heinz at Sun Jun 15 19:48:01 EDT 2014
MAPLE

with(numtheory):

b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),

`if`(i<1 or t<1, 0, b(n, i-1, t) +(p-> `if`(p>n, 0,

b(n-p, i, t-1)))(ithprime(i))))

end:

a:= n-> b(n^2, pi(n^2), 4):

seq(a(n), n=1..40); # Alois P. Heinz, Jun 15 2014

#4 by Alois P. Heinz at Sun Jun 15 19:44:56 EDT 2014
NAME

Partitions Number of partitions of n^2 into exactly 4 prime numbers.

DATA

0, 0, 1, 3, 5, 15, 13, 50, 24, 126, 50, 258, 78, 508, 115, 899, 176, 1562, 240, 2383, 299, 3616, 440, 5733, 547, 7585, 664, 10705, 863, 16259, 1033, 19591, 1234, 25943, 1566, 37879, 1860, 43405, 1976, 55700, 2529, 78989, 2942, 86261, 3162, 106212, 3867, 148771

STATUS

proposed

editing

#3 by Olivier Gérard at Sun Jun 15 15:14:39 EDT 2014
STATUS

editing

proposed

#2 by Olivier Gérard at Sun Jun 15 15:11:41 EDT 2014
NAME

allocated for Olivier Gérard

Partitions of n^2 into exactly 4 prime numbers.

DATA

0, 0, 1, 3, 5, 15, 13, 50, 24, 126, 50, 258, 78, 508, 115, 899, 176, 1562, 240, 2383, 299, 3616, 440, 5733, 547, 7585, 664, 10705, 863, 16259, 1033, 19591, 1234, 25943, 1566, 37879, 1860, 43405, 1976, 55700

OFFSET

1,4

KEYWORD

allocated

nonn

AUTHOR

Olivier Gérard, Jun 15 2014

STATUS

approved

editing

#1 by Olivier Gérard at Sun Jun 15 15:11:41 EDT 2014
NAME

allocated for Olivier Gérard

KEYWORD

allocated

STATUS

approved