proposed
approved
proposed
approved
editing
proposed
allocated Number of terms in the squares-greedy sum for Clark Kimberlingn.
1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 2, 3, 2, 2, 2, 2, 3, 3
2,4
Greedy sums and related numbers are defined at A242305.
Clark Kimberling, <a href="/A242306/b242306.txt">Table of n, a(n) for n = 2..2000</a>
n ... squares-greedy sum for n
1 ... (undefined)
2 ... 1 = 1
3 ... 1 = 1
4 ... 1 = 1
5 ... 5 = 4 + 1
6 ... 5 = 4 + 1
7 ... 5 = 4 + 1
8 ... 5 = 4 + 1
9 ... 5 = 4 + 1
10 .. 10 = 9 + 1
11 .. 10 = 9 + 1
12 .. 10 = 9 + 1
13 .. 13 = 9 + 4
14 .. 14 = 9 + 4 + 1
z = 200; s = Table[n^2, {n, 1, z}]; s1 = Table[n, {n, 1, z}]; t = Table[{s1[[n]], #, Total[#] == s1[[n]]} &[DeleteCases[-Differences[FoldList[If[#1 - #2 >= 0, #1 - #2, #1] &, s1[[n]],
Reverse[Select[s, # < s1[[n]] &]]]], 0]], {n, z}]
r[n_] := s1[[n]] - Total[t[[n]][[2]]];
tr = Table[r[n], {n, 2, z}] (* A242305 *)
c = Table[Length[t[[n]][[2]]], {n, 2, z}] (* A242306 *)
f = 1 + Flatten[Position[tr, 0]] (* A242307 *) (* Peter J. C. Moses, May 06 2014 *)
allocated
nonn,easy
Clark Kimberling, May 11 2014
approved
editing
allocated for Clark Kimberling
allocated
approved