editing
approved
editing
approved
R. H. Hardin, <a href="/A241078/b241078.txt">Table of n, a(n) for n = 1..112</a>
allocated for R. H. Hardin
T(n,k)=Number of nXk 0..2 arrays with no element equal to exactly one horizontal or vertical neighbor, with new values 0..2 introduced in row major order
1, 1, 1, 2, 4, 2, 4, 12, 12, 4, 8, 39, 67, 39, 8, 16, 131, 386, 386, 131, 16, 32, 444, 2333, 4191, 2333, 444, 32, 64, 1516, 14438, 47974, 47974, 14438, 1516, 64, 128, 5195, 90729, 572023, 1086791, 572023, 90729, 5195, 128, 256, 17847, 576616, 6996566, 25619209
1,4
Table starts
...1.....1........2...........4.............8..............16..............32
...1.....4.......12..........39...........131.............444............1516
...2....12.......67.........386..........2333...........14438...........90729
...4....39......386........4191.........47974..........572023.........6996566
...8...131.....2333.......47974.......1086791........25619209.......619056332
..16...444....14438......572023......25619209......1198954342.....57218949061
..32..1516....90729.....6996566.....619056332.....57218949061...5383469756516
..64..5195...576616....86779948...15142087661...2755743447572.510116487796210
.128.17847..3692697..1085281623..372666202588.133330360329762
.256.61424.23768052.13635536887.9201018090832
Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>2
k=2: a(n) = 6*a(n-1) -8*a(n-2) -4*a(n-3) +a(n-4) +14*a(n-5) -8*a(n-6) for n>7
k=3: [order 20] for n>21
k=4: [order 96] for n>97
Some solutions for n=4 k=4
..0..0..0..1....0..1..0..2....0..1..1..0....0..1..2..2....0..1..0..1
..0..0..0..0....2..0..2..0....1..1..1..2....1..0..2..2....2..0..1..0
..0..2..1..0....1..2..1..1....1..1..1..1....0..2..1..0....1..2..0..2
..0..0..0..0....2..0..1..1....0..1..1..1....2..1..2..1....2..1..2..1
Column 1 is A000079(n-2)
allocated
nonn,tabl
R. H. Hardin, Apr 15 2014
approved
editing
allocated for R. H. Hardin
allocated
approved