editing
approved
editing
approved
0, 0, 0, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 3, 1, 1, 2, 3, 0, 1, 2, 0, 3, 1, 0, 2, 2, 0, 0, 1, 1, 2, 3, 0, 1, 3, 0, 2, 0, 0, 2, 1, 0, 1, 2, 0, 3, 0, 0, 4, 2, 1, 1, 1, 1, 3, 4, 1, 1, 3, 1, 0, 2, 1, 1, 3, 0, 0, 2, 3, 3, 3, 1, 1, 3, 3, 2, 3, 1, 1, 5, 0, 1, 4, 2, 1, 1, 0, 2, 6, 1, 1, 2, 0, 1, 3, 0, 1, 3, 3
a(8) = 1 since 2*8 = 5 + 11 with 5, 11, prime(5) - 5 + 1 = 7 and prime(11) + 11 + 1 = 43 all prime.
p[n_] := PrimeQ[n] && PrimeQ[Prime[n] - n + 1];
q[n_] := PrimeQ[n] && PrimeQ[Prime[n] + n + 1];
a[n_] := Sum[If[p[k] && q[2n2 n - k], 1, 0], {k, 1, 2n 2 n - 1}];
Table[a[n], {n, 1, 100}]
proposed
editing
editing
proposed
a(8) = 1 since 2*8 = 5 + 11 with 5, 11, prime(5) - 5 + 1 = 7 and prime(11) + 11 + 1 = 43 all prime.
Conjecture: (i) a(n) > 0 for all n >= 2480.
This is stronger than Goldbach's conjecture(ii) If n > 4368 then 2*n+1 can be written as 2*p + q with p and q terms of the sequence A234695.
Parts (i) and (ii) are stronger than Goldbach's conjecture and Lemoine's conjecture respectively.
p[n_]:=PrimeQ[n]&&PrimeQ[Prime[n]-n+1]
a(n) = sigma(n^3), where sigma(k) is the sum of all positive divisors of k.
Number of ways to write 2*n = p + q with p, q, prime(p) - p + 1 and prime(q) + q + 1 all prime.
0, 0, 0, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 3, 1, 1, 2, 3, 0, 1, 2, 0, 3, 1, 0, 2, 2, 0, 0, 1, 1, 2, 3, 0, 1, 3, 0, 2, 0, 0, 2, 1, 0, 1, 2, 0, 3, 0, 0, 4, 2, 1, 1, 1, 1, 3, 4, 1, 1, 3, 1, 0, 2, 1, 1, 3, 0, 0, 2, 3, 3, 3, 1, 1, 3, 3, 2, 3, 1, 1, 5, 0, 1, 4, 2, 1, 1, 0, 2, 6, 1, 1, 2, 0, 1, 3, 0, 1, 15, 40, 127, 156, 600, 400, 1023, 1093, 2340, 1464, 5080, 2380, 6000, 6240, 8191, 5220, 16395, 7240, 19812, 16000, 21960, 12720, 40920, 19531, 35700, 29524, 50800, 25260, 93600, 30784, 65535, 58560, 78300, 62400, 138811, 52060, 108600, 95200, 1595883, 3
1,29
Conjecture: All the terms are pairwise distincta(n) > 0 for all n >= 2480.
This is stronger than Goldbach's conjecture.
Zhi-Wei Sun, <a href="/A235330/b235330.txt">Table of n, a(n) for n = 1..10000</a>
sigma p[n_]:=DivisorSigmaPrimeQ[n]&&PrimeQ[Prime[1, n]-n+1]
Tableq[n_]:=PrimeQ[n]&&PrimeQ[sigmaPrime[n^3], {+n, +1, 40}]
a[n_]:=Sum[If[p[k]&&q[2n-k], 1, 0], {k, 1, 2n-1}]
Table[a[n], {n, 1, 100}]
allocated for Zhi-Wei Sun
a(n) = sigma(n^3), where sigma(k) is the sum of all positive divisors of k.
1, 15, 40, 127, 156, 600, 400, 1023, 1093, 2340, 1464, 5080, 2380, 6000, 6240, 8191, 5220, 16395, 7240, 19812, 16000, 21960, 12720, 40920, 19531, 35700, 29524, 50800, 25260, 93600, 30784, 65535, 58560, 78300, 62400, 138811, 52060, 108600, 95200, 159588
1,2
Conjecture: All the terms are pairwise distinct.
sigma[n_]:=DivisorSigma[1, n]
Table[sigma[n^3], {n, 1, 40}]
Cf. A000203.
allocated
nonn
Zhi-Wei Sun, Jan 05 2014
approved
editing
allocated for Zhi-Wei Sun
allocated
approved