[go: up one dir, main page]

login
Revision History for A235330 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of ways to write 2*n = p + q with p, q, prime(p) - p + 1 and prime(q) + q + 1 all prime.
(history; published version)
#8 by Bruno Berselli at Mon Jan 06 11:14:41 EST 2014
STATUS

editing

approved

#7 by Bruno Berselli at Mon Jan 06 11:13:12 EST 2014
DATA

0, 0, 0, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 3, 1, 1, 2, 3, 0, 1, 2, 0, 3, 1, 0, 2, 2, 0, 0, 1, 1, 2, 3, 0, 1, 3, 0, 2, 0, 0, 2, 1, 0, 1, 2, 0, 3, 0, 0, 4, 2, 1, 1, 1, 1, 3, 4, 1, 1, 3, 1, 0, 2, 1, 1, 3, 0, 0, 2, 3, 3, 3, 1, 1, 3, 3, 2, 3, 1, 1, 5, 0, 1, 4, 2, 1, 1, 0, 2, 6, 1, 1, 2, 0, 1, 3, 0, 1, 3, 3

EXAMPLE

a(8) = 1 since 2*8 = 5 + 11 with 5, 11, prime(5) - 5 + 1 = 7 and prime(11) + 11 + 1 = 43 all prime.

MATHEMATICA

p[n_] := PrimeQ[n] && PrimeQ[Prime[n] - n + 1];

q[n_] := PrimeQ[n] && PrimeQ[Prime[n] + n + 1];

a[n_] := Sum[If[p[k] && q[2n2 n - k], 1, 0], {k, 1, 2n 2 n - 1}];

Table[a[n], {n, 1, 100}]

STATUS

proposed

editing

#6 by Zhi-Wei Sun at Mon Jan 06 08:15:42 EST 2014
STATUS

editing

proposed

#5 by Zhi-Wei Sun at Mon Jan 06 08:13:13 EST 2014
COMMENTS

Parts (i) and (ii) are stronger than Goldbach's conjecture (A045917) and Lemoine's conjecture (A046927) respectively.

EXAMPLE

a(8) = 1 since 2*8 = 5 + 11 with 5, 11, prime(5) - 5 + 1 = 7 and prime(11) + 11 + 1 = 43 all prime.

#4 by Zhi-Wei Sun at Mon Jan 06 08:06:21 EST 2014
COMMENTS

Conjecture: (i) a(n) > 0 for all n >= 2480.

This is stronger than Goldbach's conjecture(ii) If n > 4368 then 2*n+1 can be written as 2*p + q with p and q terms of the sequence A234695.

Parts (i) and (ii) are stronger than Goldbach's conjecture and Lemoine's conjecture respectively.

MATHEMATICA

p[n_]:=PrimeQ[n]&&PrimeQ[Prime[n]-n+1]

CROSSREFS
#3 by Zhi-Wei Sun at Mon Jan 06 08:01:57 EST 2014
NAME

a(n) = sigma(n^3), where sigma(k) is the sum of all positive divisors of k.

Number of ways to write 2*n = p + q with p, q, prime(p) - p + 1 and prime(q) + q + 1 all prime.

DATA

0, 0, 0, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 3, 1, 1, 2, 3, 0, 1, 2, 0, 3, 1, 0, 2, 2, 0, 0, 1, 1, 2, 3, 0, 1, 3, 0, 2, 0, 0, 2, 1, 0, 1, 2, 0, 3, 0, 0, 4, 2, 1, 1, 1, 1, 3, 4, 1, 1, 3, 1, 0, 2, 1, 1, 3, 0, 0, 2, 3, 3, 3, 1, 1, 3, 3, 2, 3, 1, 1, 5, 0, 1, 4, 2, 1, 1, 0, 2, 6, 1, 1, 2, 0, 1, 3, 0, 1, 15, 40, 127, 156, 600, 400, 1023, 1093, 2340, 1464, 5080, 2380, 6000, 6240, 8191, 5220, 16395, 7240, 19812, 16000, 21960, 12720, 40920, 19531, 35700, 29524, 50800, 25260, 93600, 30784, 65535, 58560, 78300, 62400, 138811, 52060, 108600, 95200, 1595883, 3

OFFSET

1,29

COMMENTS

Conjecture: All the terms are pairwise distincta(n) > 0 for all n >= 2480.

This is stronger than Goldbach's conjecture.

LINKS

Zhi-Wei Sun, <a href="/A235330/b235330.txt">Table of n, a(n) for n = 1..10000</a>

MATHEMATICA

sigma p[n_]:=DivisorSigmaPrimeQ[n]&&PrimeQ[Prime[1, n]-n+1]

Tableq[n_]:=PrimeQ[n]&&PrimeQ[sigmaPrime[n^3], {+n, +1, 40}]

a[n_]:=Sum[If[p[k]&&q[2n-k], 1, 0], {k, 1, 2n-1}]

Table[a[n], {n, 1, 100}]

CROSSREFS
#2 by Zhi-Wei Sun at Sun Jan 05 23:40:06 EST 2014
NAME

allocated for Zhi-Wei Sun

a(n) = sigma(n^3), where sigma(k) is the sum of all positive divisors of k.

DATA

1, 15, 40, 127, 156, 600, 400, 1023, 1093, 2340, 1464, 5080, 2380, 6000, 6240, 8191, 5220, 16395, 7240, 19812, 16000, 21960, 12720, 40920, 19531, 35700, 29524, 50800, 25260, 93600, 30784, 65535, 58560, 78300, 62400, 138811, 52060, 108600, 95200, 159588

OFFSET

1,2

COMMENTS

Conjecture: All the terms are pairwise distinct.

MATHEMATICA

sigma[n_]:=DivisorSigma[1, n]

Table[sigma[n^3], {n, 1, 40}]

CROSSREFS

Cf. A000203.

KEYWORD

allocated

nonn

AUTHOR

Zhi-Wei Sun, Jan 05 2014

STATUS

approved

editing

#1 by Zhi-Wei Sun at Sun Jan 05 23:40:06 EST 2014
NAME

allocated for Zhi-Wei Sun

KEYWORD

allocated

STATUS

approved