(MAGMAMagma) [7*Binomial(9*n+7, n)/(9*n+7): n in [0..30]]; // Vincenzo Librandi, Dec 27 2013
(MAGMAMagma) [7*Binomial(9*n+7, n)/(9*n+7): n in [0..30]]; // Vincenzo Librandi, Dec 27 2013
editing
approved
a(n) = 7*binomial(9*n+7,n)/(9*n+7).
proposed
editing
editing
proposed
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p = 9, r = 7.
Wikipedia, <a href="https://en.wikipedia.org/wiki/Fuss-Catalan_number">Fuss-Catalan number</a>
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p = 9, r = 7.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^7), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/7) is the o.g.f. for A062994. - Peter Bala, Oct 14 2015
nonn,easy
approved
editing
proposed
approved
editing
proposed
Fuss-Catalan sequence is a(n,p,r,s) = sr*binomial(nrnp+s,r,n)/(nrnp+s), this is the case s=7, r), where p=9, r=7.
J-C. Aval, <a href="http://www.labriarxiv.fr/persoorg/avalpdf/b50711.0906v1 Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Wojciech Mlotkowski, <a href="http://www.math.uiuc.edu/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955.
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=7.
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/7))^7+x*O(x^n)); polcoeff(B, n)}
approved
editing
editing
approved
7*binomial(9*n+7,n)/(9*n+7).
1, 7, 84, 1232, 20090, 349860, 6371764, 119877472, 2311664355, 45448324110, 907580289616, 18358110017520, 375353605696524, 7744997102466932, 161070300819384000, 3372697621463787456, 71046594621639707245, 1504569659175026591805, 32013490616435232789192
proposed
editing