(MAGMAMagma) [0, 2] cat &cat [[5, 3, 1, 1, 3, 5]^^30]; // Wesley Ivan Hurt, Jun 28 2016
(MAGMAMagma) [0, 2] cat &cat [[5, 3, 1, 1, 3, 5]^^30]; // Wesley Ivan Hurt, Jun 28 2016
reviewed
approved
proposed
reviewed
editing
proposed
a(n) = (9 - 6*cos(n*Pi/3) + 2*sqrt(3)*sin(n*Pi/3))/3 for n>2. (End)
Decimal expansion of -B(12) = 691/2730, 13th Bernoulli number without sign.
<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,-2,1).
From Wesley Ivan Hurt, Jun 28 2016: (Start)
a(n) = a(n-6) for n>8.
a(n) = (9 - 6*cos(n*Pi/3) + 2*sqrt(3)*sin(n*Pi/3))/3.
A234255:=n->[5, 3, 1, 1, 3, 5][(n mod 6)+1]: 0, 2, seq(A234255(n), n=0..100); # Wesley Ivan Hurt, Jun 28 2016
Join[{0}, RealDigits[-BernoulliB[12], 10, 120][[1]]] (* or *) PadRight[{0, 2}, 120, {3, 5, 5, 3, 1, 1}] (* Harvey P. Dale, Dec 30 2013 *)
(MAGMA) [0, 2] cat &cat [[5, 3, 1, 1, 3, 5]^^30]; // Wesley Ivan Hurt, Jun 28 2016
nonn,easy,cons
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
From Chai Wah Wu, Jun 04 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + a(n-3) for n > 5.
G.f.: x^2*(2 + x - 3*x^2 + 3*x^3)/((1 - x)*(1 - x + x^2)). (End)
approved
editing