editing
approved
editing
approved
Number of (n+1) X (4+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.
Column 4 of A232137.
Empirical: a(n) = 191*a(n-1) -6912*a(n-2) +115408*a(n-3) -1111971*a(n-4) +6750425*a(n-5) -26789260*a(n-6) +69724040*a(n-7) -116179712*a(n-8) +120732608*a(n-9) -77737728*a(n-10) +30931968*a(n-11) -7383040*a(n-12) +917504*a(n-13) -32768*a(n-14).
Cf. A232137.
approved
editing
editing
approved
R. H. Hardin, <a href="/A232133/b232133.txt">Table of n, a(n) for n = 1..210</a>
allocated for R. H. Hardin
Number of (n+1)X(4+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order
1140, 169692, 25364480, 3795674252, 568008109436, 85000031249096, 12719895449388800, 1903478569962529436, 284847519195214207740, 42626226776754332086840, 6378834593164563425802400
1,1
Column 4 of A232137
Empirical: a(n) = 191*a(n-1) -6912*a(n-2) +115408*a(n-3) -1111971*a(n-4) +6750425*a(n-5) -26789260*a(n-6) +69724040*a(n-7) -116179712*a(n-8) +120732608*a(n-9) -77737728*a(n-10) +30931968*a(n-11) -7383040*a(n-12) +917504*a(n-13) -32768*a(n-14)
Some solutions for n=1
..0..1..2..1..2....0..1..0..1..2....0..1..0..1..1....0..1..2..0..2
..1..2..0..2..1....1..2..0..1..0....2..0..2..0..2....2..1..0..1..2
allocated
nonn
R. H. Hardin, Nov 19 2013
approved
editing
allocated for R. H. Hardin
allocated
approved