proposed
approved
proposed
approved
editing
proposed
Number of 3X3 3 X 3 0..n arrays with rows and columns in lexicographically nondecreasing order.
Row 3 of A229794
Empirical: a(n) = (1/20)*n^9 + (11/24)*n^8 + (329/180)*n^7 + (1601/360)*n^6 + (545/72)*n^5 + (347/36)*n^4 + (3367/360)*n^3 + (313/45)*n^2 + (37/10)*n + 1.
Conjectures from Colin Barker, Sep 21 2018: (Start)
G.f.: x*(45 + 719*x + 4513*x^2 + 7676*x^3 + 4687*x^4 + 420*x^5 + 121*x^6 - 46*x^7 + 10*x^8 - x^9) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)
Some solutions for n=2:
Row 3 of A229794.
approved
editing
editing
approved
R. H. Hardin, <a href="/A229796/b229796.txt">Table of n, a(n) for n = 1..207</a>
allocated for R. H. Hardin
Number of 3X3 0..n arrays with rows and columns in lexicographically nondecreasing order
45, 1169, 14178, 102251, 520017, 2066505, 6842284, 19692165, 50724037, 119421753, 261015470, 535936479, 1043365337, 1940082033, 3466044984, 5978361865, 9995569629, 16254413569, 25781605914, 39983353235, 60755768865, 90619631609
1,1
Row 3 of A229794
Empirical: a(n) = (1/20)*n^9 + (11/24)*n^8 + (329/180)*n^7 + (1601/360)*n^6 + (545/72)*n^5 + (347/36)*n^4 + (3367/360)*n^3 + (313/45)*n^2 + (37/10)*n + 1
Some solutions for n=2
..0..1..1....0..0..2....0..0..0....1..1..2....1..1..1....0..2..2....0..2..2
..0..1..2....1..2..1....0..2..2....1..2..0....1..1..2....1..0..2....1..0..1
..2..1..0....2..0..1....0..2..2....2..0..1....2..2..1....1..2..2....1..2..1
allocated
nonn
R. H. Hardin, Sep 29 2013
approved
editing
allocated for R. H. Hardin
allocated
approved