editing
approved
editing
approved
Composite squarefree numbers n such that p(i)+10 divides n-10, where p(i) are the for each prime factors of p dividing n.
10, 79222, 206965, 784090, 1673122, 2227123, 4798090, 5202571, 9196330, 13146715, 15015430, 18213595, 19342333, 21735010, 27907435, 28234018, 28240090, 37394146, 38710990, 53990695, 54772453, 70646509, 79671826, 89678830, 107251990, 114572545, 115005187, 137245690
(PARI) is(n, f=factor(n))=if(#f[, 2]<2 || vecmax(f[, 2])>1, return(0)); for(i=1, #f~, if((n-10)%(f[i, 1]+10), return(0))); 1 \\ Charles R Greathouse IV, Nov 05 2017
a(28) from Charles R Greathouse IV, Nov 05 2017
approved
editing
proposed
approved
editing
proposed
10, 79222, 206965, 784090, 1673122, 2227123, 4798090, 5202571, 9196330, 13146715, 15015430, 18213595, 19342333, 21735010, 27907435, 28234018, 28240090, 37394146, 38710990, 53990695, 54772453, 70646509, 79671826, 89678830, 107251990, 114572545, 115005187
a(20)-a(27) from Donovan Johnson, Nov 15 2013
approved
editing
editing
approved
editing
proposed
Prime factors of 2227123 are 19, 251 and 467. We have that (19+10)|( 2227123-10)/(19+10) = 76797, (251+10)|( 2227123-10)/(251+10) = 8533 and (467+10)|(2227123-10)/(467+10) = 4669.
for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;
if not type((n+j)/(p[d][1]-j), integer) then ok:=0; break; fi; od;
if ok=1 then print(n); fi; fi; od; end: A225720(10^9, -10);
proposed
editing