editing
approved
editing
approved
aa = {}; Do[p = Prime[n]; If[Mod[p, 128] == 1, k = 1; While[ ! Mod[k^64 + 1, p] == 0, k++ ]; AppendTo[aa, k]], {n, 5000}]; aa
proposed
editing
editing
proposed
proposed
editing
editing
proposed
9, 21, 5, 38, 21, 31, 33, 63, 42, 66, 118, 131, 202, 29, 28, 31, 58, 171, 94, 182, 309, 182, 81, 272, 110, 175, 657, 491, 42, 100, 523, 244, 168, 199, 45, 145, 138, 79, 73, 357, 826, 210, 541, 523, 215, 98, 220, 1478, 22, 92, 178, 50, 709, 250, 2523, 630, 18, 218, 7, 12
spi[n_]:=Module[{k=1}, While[PowerMod[k, 64, n]!=n-1, k++]; k]; spi/@Select[128 Range[500]+1, PrimeQ] (* Harvey P. Dale, Jan 19 2021 *)
Corrected by Harvey P. Dale, Jan 19 2021
approved
editing
editing
approved
a(n) is the smallest positive integer k such that k^64 + 1 == 0 mod p, where p is the n-th prime of the form 1 + 128*b (see A208177(n).
aa = {}; Do[If[Mod[p = Prime[n], ; If[Mod[p, 128] == 1, k = 1; While[ ! Mod[k^64 + 1, Prime[n]p] == 0, k++ ]; AppendTo[aa, k]], {n, 1, 5000}]; aa
proposed
editing