reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Number of prime numbers between floor(n*log(n)) and (n + 1)*log(n + 1).
A. Brauer and H. Zeitz, Über eine zahlentheoretische Behauptung von Legendre, Sitz. Berliner Math. Gee. 29 (1930), pp. 116-125; cited in Erdos 1935.
Legendre, Sitz. Berliner Math. Gee. 29 (1930), pp. 116-125; cited in Erdos 1935.
approved
editing
editing
approved
Table[s = Floor[n*Log[n]]; PrimePi[(n+1) Log[n+1]] - PrimePi[s] + Boole[PrimeQ[s]], {n, 100}] (* T. D. Noe, Oct 15 2012 *)
proposed
editing
editing
proposed
The first conjecture follows from Dickson's conjecture. The second conjecture follows from a theorem of Brauer & Zeitz on prime gaps. - Charles R Greathouse IV, Oct 15 2012
A. Brauer and H. Zeitz, Über eine zahlentheoretische Behauptung von
Legendre, Sitz. Berliner Math. Gee. 29 (1930), pp. 116-125; cited in Erdos 1935.
Paul Erdős, <a href="http://www.renyi.hu/~p_erdos/1935-07.pdf">On the difference of consecutive primes</a>, Quart. J. Math., Oxford Ser. 6 (1935), pp. 124-128.
(PARI) a(n)=sum(k=n*log(n)\1, (n+1)*log(n+1), isprime(k)) \\ Charles R Greathouse IV, Oct 15 2012
proposed
editing
editing
proposed
Cf. A166712