editing
approved
editing
approved
R. H. Hardin, <a href="/A211336/b211336.txt">Table of n, a(n) for n = 1..74</a>
allocated for R. H. Hardin
Number of (n+1)X(n+1) -5..5 symmetric matrices with every 2X2 subblock having sum zero and two, three or four distinct values
60, 332, 1846, 10332, 58164, 329130, 1870664, 10670876, 61044918, 349974788, 2009495068, 11549465226, 66414142512, 381959562756, 2196335839046, 12624063953180, 72516570941316, 416247502883594, 2387248114517560
1,1
Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
Empirical: a(n) = 32*a(n-1) -429*a(n-2) +3078*a(n-3) -12340*a(n-4) +24890*a(n-5) -10895*a(n-6) -35870*a(n-7) +19131*a(n-8) +40338*a(n-9) +18694*a(n-10) +3532*a(n-11) +240*a(n-12)
Some solutions for n=3
.-3..1.-1..2....5.-3..0.-4....5.-2..4.-5....2..0.-1.-2....2.-1.-1..1
..1..1.-1..0...-3..1..2..2...-2.-1.-1..2....0.-2..3..0...-1..0..2.-2
.-1.-1..1..0....0..2.-5..1....4.-1..3.-4...-1..3.-4..1...-1..2.-4..4
..2..0..0.-1...-4..2..1..3...-5..2.-4..5...-2..0..1..2....1.-2..4.-4
allocated
nonn
R. H. Hardin Apr 07 2012
approved
editing
allocated for R. H. Hardin
allocated
approved