proposed
approved
proposed
approved
editing
proposed
Empirical: a(n) = a(n-1) + 4*a(n-2) - 2*a(n-3) - 4*a(n-4).
Number of (n+1) X (n+1) -3..3 symmetric matrices with every 2X2 2 X 2 subblock having sum zero and one, three or four distinct values.
Symmetry and 2X2 2 X 2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j) = (x(i,i)+x(j,j))/2*(-1)^(i-j).
Empirical: a(n) = a(n-1) +4*a(n-2) -2*a(n-3) -4*a(n-4).
Conjectures from Colin Barker, Jul 17 2018: (Start)
G.f.: x*(15 + 18*x - 24*x^2 - 28*x^3) / ((1 + x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = (-9*2^(n/2) + 29*2^n + 1)/3 for n even.
a(n) = (-3*2^(n/2+3/2) + 29*2^n - 1)/3 for n odd.
(End)
Some solutions for n=3:
R. H. Hardin , Apr 07 2012
approved
editing
editing
approved
R. H. Hardin, <a href="/A211327/b211327.txt">Table of n, a(n) for n = 1..210</a>
allocated for R. H. Hardin
Number of (n+1)X(n+1) -3..3 symmetric matrices with every 2X2 subblock having sum zero and one, three or four distinct values
15, 33, 69, 143, 293, 595, 1205, 2427, 4885, 9803, 19669, 39403, 78933, 157995, 316245, 632747, 1266005, 2532523, 5066069, 10133163, 20268373, 40538795, 81081685, 162167467, 324343125, 648694443, 1297405269, 2594826923, 5189686613
1,1
Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
Empirical: a(n) = a(n-1) +4*a(n-2) -2*a(n-3) -4*a(n-4)
Some solutions for n=3
.-1..2..1..0....0.-1..0.-1...-2..1..0..1....1.-2..1.-2....0..0..0..0
..2.-3..0.-1...-1..2.-1..2....1..0.-1..0...-2..3.-2..3....0..0..0..0
..1..0..3.-2....0.-1..0.-1....0.-1..2.-1....1.-2..1.-2....0..0..0..0
..0.-1.-2..1...-1..2.-1..2....1..0.-1..0...-2..3.-2..3....0..0..0..0
allocated
nonn
R. H. Hardin Apr 07 2012
approved
editing
allocated for R. H. Hardin
allocated
approved