[go: up one dir, main page]

login
Revision History for A211327 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of (n+1) X (n+1) -3..3 symmetric matrices with every 2 X 2 subblock having sum zero and one, three or four distinct values.
(history; published version)
#8 by Alois P. Heinz at Tue Jul 17 08:21:05 EDT 2018
STATUS

proposed

approved

#7 by Colin Barker at Tue Jul 17 05:58:50 EDT 2018
STATUS

editing

proposed

#6 by Colin Barker at Tue Jul 17 05:58:23 EDT 2018
FORMULA

Empirical: a(n) = a(n-1) + 4*a(n-2) - 2*a(n-3) - 4*a(n-4).

#5 by Colin Barker at Tue Jul 17 05:57:26 EDT 2018
NAME

Number of (n+1) X (n+1) -3..3 symmetric matrices with every 2X2 2 X 2 subblock having sum zero and one, three or four distinct values.

COMMENTS

Symmetry and 2X2 2 X 2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j) = (x(i,i)+x(j,j))/2*(-1)^(i-j).

FORMULA

Empirical: a(n) = a(n-1) +4*a(n-2) -2*a(n-3) -4*a(n-4).

Conjectures from Colin Barker, Jul 17 2018: (Start)

G.f.: x*(15 + 18*x - 24*x^2 - 28*x^3) / ((1 + x)*(1 - 2*x)*(1 - 2*x^2)).

a(n) = (-9*2^(n/2) + 29*2^n + 1)/3 for n even.

a(n) = (-3*2^(n/2+3/2) + 29*2^n - 1)/3 for n odd.

(End)

EXAMPLE

Some solutions for n=3:

AUTHOR

R. H. Hardin , Apr 07 2012

STATUS

approved

editing

#4 by R. H. Hardin at Sat Apr 07 19:19:15 EDT 2012
STATUS

editing

approved

#3 by R. H. Hardin at Sat Apr 07 19:19:11 EDT 2012
LINKS

R. H. Hardin, <a href="/A211327/b211327.txt">Table of n, a(n) for n = 1..210</a>

#2 by R. H. Hardin at Sat Apr 07 19:18:54 EDT 2012
NAME

allocated for R. H. Hardin

Number of (n+1)X(n+1) -3..3 symmetric matrices with every 2X2 subblock having sum zero and one, three or four distinct values

DATA

15, 33, 69, 143, 293, 595, 1205, 2427, 4885, 9803, 19669, 39403, 78933, 157995, 316245, 632747, 1266005, 2532523, 5066069, 10133163, 20268373, 40538795, 81081685, 162167467, 324343125, 648694443, 1297405269, 2594826923, 5189686613

OFFSET

1,1

COMMENTS

Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)

FORMULA

Empirical: a(n) = a(n-1) +4*a(n-2) -2*a(n-3) -4*a(n-4)

EXAMPLE

Some solutions for n=3

.-1..2..1..0....0.-1..0.-1...-2..1..0..1....1.-2..1.-2....0..0..0..0

..2.-3..0.-1...-1..2.-1..2....1..0.-1..0...-2..3.-2..3....0..0..0..0

..1..0..3.-2....0.-1..0.-1....0.-1..2.-1....1.-2..1.-2....0..0..0..0

..0.-1.-2..1...-1..2.-1..2....1..0.-1..0...-2..3.-2..3....0..0..0..0

KEYWORD

allocated

nonn

AUTHOR

R. H. Hardin Apr 07 2012

STATUS

approved

editing

#1 by R. H. Hardin at Sat Apr 07 19:13:42 EDT 2012
NAME

allocated for R. H. Hardin

KEYWORD

allocated

STATUS

approved