reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Half the number of (n+1)X2 X 2 0..3 arrays with every 2X2 2 X 2 subblock having two or four distinct clockwise edge differences.
Column 1 of A209913.
Empirical: a(n) = 7*a(n-1) + 21*a(n-2) - 30*a(n-3) - 30*a(n-4) + 12*a(n-5) + 8*a(n-6).
Empirical g.f.: 2*x*(31 + 64*x - 114*x^2 - 114*x^3 + 46*x^4 + 32*x^5) / (1 - 7*x - 21*x^2 + 30*x^3 + 30*x^4 - 12*x^5 - 8*x^6). - Colin Barker, Jul 13 2018
Some solutions for n=4:
Cf. A209913.
R. H. Hardin , Mar 15 2012
approved
editing
_R. H. Hardin (rhhardin(AT)att.net) _ Mar 15 2012
editing
approved
R. H. Hardin, <a href="/A209906/b209906.txt">Table of n, a(n) for n = 1..210</a>
allocated for Ron HardinHalf the number of (n+1)X2 0..3 arrays with every 2X2 subblock having two or four distinct clockwise edge differences
62, 562, 5008, 44770, 399930, 3573388, 31926146, 285247762, 2548561164, 22770302450, 203442764450, 1817673135676, 16240122477074, 145098465897778, 1296391988417932, 11582701309989362, 103486422895200258
1,1
Column 1 of A209913
Empirical: a(n) = 7*a(n-1) +21*a(n-2) -30*a(n-3) -30*a(n-4) +12*a(n-5) +8*a(n-6)
Some solutions for n=4
..0..2....1..2....0..2....2..0....0..0....0..0....3..0....2..0....2..3....1..0
..0..3....0..3....3..3....2..3....1..3....2..3....1..0....3..0....0..1....0..1
..0..1....2..2....0..1....1..2....2..1....3..2....0..3....2..0....2..0....0..3
..2..3....0..3....2..3....0..1....3..2....0..1....2..3....3..1....0..1....1..2
..1..2....2..2....2..0....1..2....0..3....0..3....1..2....1..2....3..0....2..1
allocated
nonn
R. H. Hardin (rhhardin(AT)att.net) Mar 15 2012
approved
editing
allocated for Ron Hardin
allocated
approved