proposed
approved
proposed
approved
editing
proposed
Number of 3Xn 3 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 1 vertically.
Row 3 of A207589.
Empirical: a(n) = a(n-1) + 3*a(n-2) for n>4.
Conjectures from Colin Barker, Mar 05 2018: (Start)
G.f.: 6*x*(1 + 5*x + x^2 - 4*x^3) / (1 - x - 3*x^2).
a(n) = (2^(1-n)*((1-sqrt(13))^n*(-35+13*sqrt(13)) + (1+sqrt(13))^n*(35+13*sqrt(13)))) / (9*sqrt(13)) for n>2.
(End)
Some solutions for n=4:
Cf. A207589.
R. H. Hardin , Feb 19 2012
approved
editing
_R. H. Hardin (rhhardin(AT)att.net) _ Feb 19 2012
editing
approved
R. H. Hardin, <a href="/A207590/b207590.txt">Table of n, a(n) for n = 1..210</a>
allocated for Ron HardinNumber of 3Xn 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 1 vertically
6, 36, 60, 144, 324, 756, 1728, 3996, 9180, 21168, 48708, 112212, 258336, 594972, 1369980, 3154896, 7264836, 16729524, 38524032, 88712604, 204284700, 470422512, 1083276612, 2494544148, 5744373984, 13228006428, 30461128380, 70145147664
1,1
Row 3 of A207589
Empirical: a(n) = a(n-1) +3*a(n-2) for n>4
Some solutions for n=4
..0..1..1..0....1..1..0..0....1..1..0..1....0..1..1..1....1..1..1..1
..1..0..1..0....1..0..1..0....0..1..1..1....1..0..1..0....1..0..1..0
..0..1..0..0....0..1..1..0....1..0..1..0....0..1..0..1....0..1..0..1
allocated
nonn
R. H. Hardin (rhhardin(AT)att.net) Feb 19 2012
approved
editing
allocated for Ron Hardin
allocated
approved