_Reinhard Zumkeller_, , <a href="/A207193/b207193.txt">Table of n, a(n) for n = 1..10000</a>
_Reinhard Zumkeller_, , <a href="/A207193/b207193.txt">Table of n, a(n) for n = 1..10000</a>
_Reinhard Zumkeller, _, <a href="/A207193/b207193.txt">Table of n, a(n) for n = 1..10000</a>
_Reinhard Zumkeller (reinhard.zumkeller(AT)gmail.com), _, Feb 16 2012
editing
approved
if If p = 2 and e > 2 then a(n)=2^(e-2), otherwise a(n)=(p-1)*p^(e-1), where p^e = A000961(n), the n-th prime power.
proposed
editing
editing
proposed
a(n) = if p = 2 and e > 2 then a(n)=2^(e-2) else , otherwise a(n)=(p-1)*p^(e-1), where p^e = A000961(n), the n-th prime power.
proposed
editing
editing
proposed
allocated Auxiliary function for Reinhard Zumkellercomputing the Carmichael lambda function (A002322).
1, 1, 2, 2, 4, 6, 2, 6, 10, 12, 4, 16, 18, 22, 20, 18, 28, 30, 8, 36, 40, 42, 46, 42, 52, 58, 60, 16, 66, 70, 72, 78, 54, 82, 88, 96, 100, 102, 106, 108, 112, 110, 100, 126, 32, 130, 136, 138, 148, 150, 156, 162, 166, 156, 172, 178, 180, 190, 192, 196, 198
1,3
Reinhard Zumkeller, <a href="/A207193/b207193.txt">Table of n, a(n) for n = 1..10000</a>
a(n) = if p = 2 and e > 2 then 2^(e-2) else (p-1)*p^(e-1), where p^e = A000961(n), the n-th prime power.
(Haskell)
a207193 1 = 1
a207193 n | p == 2 && e > 2 = 2 ^ (e - 2)
| otherwise = (p - 1) * p ^ (e - 1)
where p = a025473 n; e = a025474 n
allocated
nonn
Reinhard Zumkeller (reinhard.zumkeller(AT)gmail.com), Feb 16 2012
approved
editing
allocated for Reinhard Zumkeller
allocated
approved