reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Seiichi Manyama, <a href="/A206849/b206849.txt">Table of n, a(n) for n = 0..57</a>
approved
editing
editing
approved
Vaclav Kotesovec, <a href="/A206849/a206849.jpg">Limits, graph for 500 terms</a>
From Vaclav Kotesovec, Mar 03 2014: (Start)
Limit n->infinity a(n)^(1/n^2) = 2
Lim sup n->infinity a(n)/(2^(n^2)/n) = sqrt(2/Pi) * JacobiTheta3(0,exp(-4)) = Sqrt[2/Pi] * EllipticTheta[3, 0, 1/E^4] = 0.827112271364145742...
Lim inf n->infinity a(n)/(2^(n^2)/n) = sqrt(2/Pi) * JacobiTheta2(0,exp(-4)) = Sqrt[2/Pi] * EllipticTheta[2, 0, 1/E^4] = 0.587247586271786487...
(End)
approved
editing
editing
approved
Ignoring the initial term a(0), equals the logarithmic derivative of A206848.
Table[Sum[Binomial[n^2, k^2], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
approved
editing
editing
approved