editing
approved
editing
approved
Note: exp( Sum_{n>=1} (x^n/n) * Product_{d|n} (1 + x^n) ) does not yield an integer sequenceseries.
approved
editing
proposed
approved
editing
proposed
Note: exp( Sum_{n>=1} (x^n/n) * Product_{d|n} (1 + x^n) ) does not yield an integer seriessequence.
G.f.: A(x) = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 8*x^6 + 8*x^7 + ...
log(A(x)) = x*(1+x) + x^2*(1+x^2)*(1+2*x^2)/2 + x^3*(1+x^3)*(1+3*x^3)/3 + x^4*(1+x^4)*(1+2*x^4)*(1+4*x^4)/4 + x^5*(1+x^5)*(1+5*x^5)/5 + x^6*(1+x^6)*(1+2*x^6)*(1+3*x^6)*(1+6*x^6)/6 + ...
log(A(x)) = x + 3*x^2/2 + x^3/3 + 7*x^4/4 + x^5/5 + 15*x^6/6 + x^7/7 + 15*x^8/8 + 10*x^9/9 + 13*x^10/10 + ... + A205479(n)*x^n/n + ...
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
G.f.: exp( Sum_{n>=1} (x^n/n) * Product_{d|n} (1 + d*x^n) ).
Note: exp( Sum_{n>=1} (x^n/n) * Product_{d|n} (1 + x^n) ) does not yield an integer series.
Logarithmic derivative yields A205479.
G.f.: A(x) = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 8*x^6 + 8*x^7 +...
max = 50; s = Exp[Sum[(x^n/n)*Product[1+d*x^n, {d, Divisors[n]}], {n, 1, max}]] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 23 2015 *)
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*exp(sumdiv(m, d, log(1+d*x^m+x*O(x^n)))))), n)}
approved
editing
_Paul D. Hanna (pauldhanna(AT)juno.com), _, Jan 27 2012