proposed
approved
proposed
approved
editing
proposed
Let s=(1,3,4,6,8,...)=A000201) and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202869 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202870 for characteristic polynomials of principal submatrices of M, with interlacing zeros.
approved
editing
Let s=(1,3,4,6,8,...)=A000201) and let T be the infinite square matrix whose nth n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202869 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202870 for characteristic polynomials of principal submatrices of M,with interlacing zeros.
_Clark Kimberling (ck6(AT)evansville.edu), _, Dec 26 2011
proposed
approved
editing
proposed
allocated for Clark KimberlingSymmetric matrix based on the lower Wythoff sequence, A000201, by antidiagonals.
1, 3, 3, 4, 10, 4, 6, 15, 15, 6, 8, 22, 26, 22, 8, 9, 30, 39, 39, 30, 9, 11, 35, 54, 62, 54, 35, 11, 12, 42, 66, 87, 87, 66, 42, 12, 14, 47, 79, 108, 126, 108, 79, 47, 14, 16, 54, 90, 132, 159, 159, 132, 90, 54, 16, 17, 62, 103, 151, 196, 207, 196, 151, 103, 62
1,2
Let s=(1,3,4,6,8,...)=A000201) and let T be the infinite square matrix whose nth row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202869 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202870 for characteristic polynomials of principal submatrices of M,with interlacing zeros.
Northwest corner:
1...3....4....6....8....9
3...10...15...22...30...35
4...15...26...39...54...66
6...22...39...62...87...108
8...30...54...87...126..159
s[k_] := Floor[k*GoldenRatio];
U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
L = Transpose[U]; M = L.U; TableForm[M]
m[i_, j_] := M[[i]][[j]];
Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
Table[f[n], {n, 1, 12}]
Table[Sqrt[f[n]], {n, 1, 12}] (* A054347 *)
Table[m[1, j], {j, 1, 12}] (* A000201 *)
Cf. A202870.
allocated
nonn,tabl
Clark Kimberling (ck6(AT)evansville.edu), Dec 26 2011
approved
editing
allocated for Clark Kimberling
allocated
approved