proposed
approved
proposed
approved
editing
proposed
Number of (n+1)X7 X 7 binary arrays with consecutive windows of two bits considered as a binary number nondecreasing in every row and column.
Column 6 of A202335.
Empirical: a(n) = (1/2520)*n^7 + (11/720)*n^6 + (167/720)*n^5 + (265/144)*n^4 + (5999/720)*n^3 + (974/45)*n^2 + (4191/140)*n + 19.
Conjectures from Colin Barker, May 28 2018: (Start)
G.f.: x*(81 - 378*x + 854*x^2 - 1148*x^3 + 966*x^4 - 502*x^5 + 148*x^6 - 19*x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
Some solutions for n=5:
Cf. A202335.
R. H. Hardin , Dec 17 2011
approved
editing
_R. H. Hardin (rhhardin(AT)att.net) _ Dec 17 2011
editing
approved
R. H. Hardin, <a href="/A202333/b202333.txt">Table of n, a(n) for n = 1..210</a>
allocated for Ron HardinNumber of (n+1)X7 binary arrays with consecutive windows of two bits considered as a binary number nondecreasing in every row and column
81, 270, 746, 1796, 3896, 7790, 14588, 25885, 43903, 71658, 113154, 173606, 259694, 379850, 544580, 766823, 1062349, 1450198, 1953162, 2598312, 3417572, 4448342, 5734172, 7325489, 9280379, 11665426, 14556610, 18040266, 22214106, 27188306
1,1
Column 6 of A202335
Empirical: a(n) = (1/2520)*n^7 + (11/720)*n^6 + (167/720)*n^5 + (265/144)*n^4 + (5999/720)*n^3 + (974/45)*n^2 + (4191/140)*n + 19
Some solutions for n=5
..0..0..0..0..0..1..1....0..0..0..0..0..1..0....0..0..0..0..0..0..0
..0..0..0..0..1..1..1....0..0..0..0..1..1..1....0..0..0..0..0..0..0
..0..0..0..0..1..1..1....0..0..1..1..1..1..1....0..0..0..0..0..0..1
..0..0..0..0..1..1..1....0..0..1..1..1..1..1....0..0..0..0..0..0..1
..0..0..0..1..1..1..1....1..1..1..1..1..1..1....0..0..0..0..0..1..1
..0..0..0..0..1..1..1....0..1..1..1..1..1..1....0..0..0..1..1..1..1
allocated
nonn
R. H. Hardin (rhhardin(AT)att.net) Dec 17 2011
approved
editing
allocated for Ron Hardin
allocated
approved