_Clark Kimberling (ck6(AT)evansville.edu), _, Dec 05 2011
_Clark Kimberling (ck6(AT)evansville.edu), _, Dec 05 2011
proposed
approved
editing
proposed
allocated for Clark KimberlingDecimal expansion of the least x satisfying -x^2+4=e^x.
1, 9, 6, 4, 6, 3, 5, 5, 9, 7, 4, 8, 8, 8, 6, 4, 5, 0, 7, 6, 2, 2, 6, 5, 9, 6, 9, 2, 1, 1, 0, 9, 7, 7, 5, 8, 8, 3, 7, 5, 3, 0, 7, 5, 0, 6, 3, 7, 9, 4, 2, 2, 8, 1, 1, 5, 2, 1, 9, 7, 9, 5, 8, 3, 2, 3, 5, 7, 0, 1, 6, 4, 3, 2, 2, 0, 8, 8, 1, 3, 2, 7, 7, 9, 0, 4, 8, 2, 1, 7, 3, 5, 1, 7, 0, 4, 8, 3, 0
1,2
See A201741 for a guide to related sequences. The Mathematica program includes a graph.
least: -1.96463559748886450762265969211097...
greatest: 1.058006401090636308621387446123...
a = -1; b = 0; c = 4;
f[x_] := a*x^2 + b*x + c; g[x_] := E^x
Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -2.0, -1.9}, WorkingPrecision -> 110]
RealDigits[r] (* A201755 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]
RealDigits[r] (* A201756 *)
Cf. A201741.
allocated
nonn,cons
Clark Kimberling (ck6(AT)evansville.edu), Dec 05 2011
approved
editing
allocated for Clark Kimberling
allocated
approved