[go: up one dir, main page]

login
Revision History for A200102 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Decimal expansion of greatest x satisfying x^2 - 4*cos(x) = 2*sin(x).
(history; published version)
#8 by Susanna Cuyler at Mon Jun 25 22:53:35 EDT 2018
STATUS

proposed

approved

#7 by G. C. Greubel at Mon Jun 25 19:15:15 EDT 2018
STATUS

editing

proposed

#6 by G. C. Greubel at Mon Jun 25 19:15:08 EDT 2018
NAME

Decimal expansion of greatest x satisfying x^2 - 4*cos(x) = 2*sin(x).

LINKS

G. C. Greubel, <a href="/A200102/b200102.txt">Table of n, a(n) for n = 1..10000</a>

PROG

(PARI) a=1; b=-4; c=2; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018

STATUS

approved

editing

#5 by Russ Cox at Fri Mar 30 18:57:59 EDT 2012
AUTHOR

_Clark Kimberling (ck6(AT)evansville.edu), _, Nov 13 2011

Discussion
Fri Mar 30
18:57
OEIS Server: https://oeis.org/edit/global/285
#4 by T. D. Noe at Sun Nov 13 17:10:47 EST 2011
STATUS

proposed

approved

#3 by Clark Kimberling at Sun Nov 13 16:23:48 EST 2011
STATUS

editing

proposed

#2 by Clark Kimberling at Sun Nov 13 15:26:59 EST 2011
NAME

allocated for Clark KimberlingDecimal expansion of greatest x satisfying x^2-4*cos(x)=2*sin(x).

DATA

1, 5, 0, 4, 0, 7, 4, 3, 6, 5, 6, 0, 3, 9, 0, 8, 4, 5, 6, 2, 5, 7, 7, 0, 9, 6, 8, 1, 3, 1, 2, 5, 9, 7, 2, 7, 8, 5, 5, 0, 0, 6, 5, 6, 0, 9, 3, 9, 5, 9, 0, 8, 3, 2, 2, 3, 4, 0, 3, 8, 1, 1, 2, 3, 9, 7, 6, 0, 1, 6, 5, 6, 2, 7, 5, 7, 6, 0, 1, 4, 0, 7, 0, 4, 0, 8, 6, 7, 1, 7, 2, 8, 3, 5, 5, 4, 8, 7, 5

OFFSET

1,2

COMMENTS

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

EXAMPLE

least x: -0.91770131583160047517052439095392148771...

greatest x: 1.50407436560390845625770968131259727...

MATHEMATICA

a = 1; b = -4; c = 2;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.92, -.91}, WorkingPrecision -> 110]

RealDigits[r] (* A200101 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]

RealDigits[r] (* A200102 *)

CROSSREFS

Cf. A199949.

KEYWORD

allocated

nonn,cons

AUTHOR

Clark Kimberling (ck6(AT)evansville.edu), Nov 13 2011

STATUS

approved

editing

#1 by Clark Kimberling at Sun Nov 13 14:27:19 EST 2011
NAME

allocated for Clark Kimberling

KEYWORD

allocated

STATUS

approved