Select[Range[2000], MemberQ[FoldList[Plus, 0, Divisors[#]], CarmichaelLambda[#]] &] (* _T. D. Noe, _, Aug 29 2011 *)
Select[Range[2000], MemberQ[FoldList[Plus, 0, Divisors[#]], CarmichaelLambda[#]] &] (* _T. D. Noe, _, Aug 29 2011 *)
_Michel Lagneau (mn.lagneau2(AT)orange.fr), _, Aug 28 2011
editing
approved
a = {}; For[j = 1, j <= 2000, j++, s = 0; d = Divisors[j]; l = Length[d]; e = CarmichaelLambda[j]; For[i = 1, i <= l, i++, s = s + d[[i]]; If[s == e, a = Append[a, j]; Break]]]; a
Select[Range[2000], MemberQ[FoldList[Plus, 0, Divisors[#]], CarmichaelLambda[#]] &] (* T. D. Noe, Aug 29 2011 *)
editing
proposed
The divisors of 140 are 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140 and lambda(140) = 12 = 1 + 2 + 4 + 5; hence 140 belongs to the sequence.
proposed
editing
editing
proposed
allocated Lambda(n) is the sum of the first k divisors of n for Michel Lagneausome k.
1, 2, 15, 18, 36, 42, 72, 78, 84, 126, 132, 140, 165, 168, 192, 200, 204, 234, 252, 260, 264, 270, 280, 288, 348, 400, 408, 440, 462, 504, 520, 546, 560, 741, 816, 825, 880, 882, 888, 912, 1040, 1044, 1248, 1464, 1470, 1632, 1638, 1692, 1710, 1749
1,2
Lambda(n) is the Carmichael lambda function (A002322).
with(numtheory):for n from 1 to 2500 do:x:=divisors(n):n1:=nops(x):s:=0:for k from 1 to n1 while(s<=n) do:s:=s+x[k]:if s= lambda(n) then printf(`%d, `, n):else fi:od:od:
a = {}; For[j = 1, j <= 2000, j++, s = 0; d = Divisors[j]; l = Length[d]; e = CarmichaelLambda[j]; For[i = 1, i <= l, i++, s = s + d[[i]]; If[s == e, a = Append[a, j]; Break]]]; a
allocated
nonn
Michel Lagneau (mn.lagneau2(AT)orange.fr), Aug 28 2011
approved
editing