[go: up one dir, main page]

login
Revision History for A193953 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Triangular array: the fusion of (p(n,x)) by (q(n,x)), where p(n,x)=sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers), and q(n,x)=x*q(n-1,x)+n+1, n>=0.
(history; published version)
#7 by Andrey Zabolotskiy at Wed Jan 03 07:40:11 EST 2024
STATUS

editing

approved

#6 by Andrey Zabolotskiy at Wed Jan 03 07:40:02 EST 2024
NAME

Triangular array: the fusion of (p(n,x)) by (q(n,x)), where p(n,x)=sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers), and q(n,x)=x*q[(n-1,x})+n+1, n>=0.

STATUS

approved

editing

#5 by Russ Cox at Fri Mar 30 18:57:39 EDT 2012
AUTHOR

_Clark Kimberling (ck6(AT)evansville.edu), _, Aug 10 2011

Discussion
Fri Mar 30
18:57
OEIS Server: https://oeis.org/edit/global/285
#4 by T. D. Noe at Wed Aug 10 19:19:34 EDT 2011
STATUS

proposed

approved

#3 by Clark Kimberling at Wed Aug 10 16:42:38 EDT 2011
STATUS

editing

proposed

#2 by Clark Kimberling at Wed Aug 10 12:09:10 EDT 2011
NAME

allocated for Clark KimberlingTriangular array: the fusion of (p(n,x)) by (q(n,x)), where p(n,x)=sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers), and q(n,x)=x*q[n-1,x}+n+1, n>=0.

DATA

1, 1, 2, 1, 3, 5, 2, 5, 9, 13, 3, 8, 14, 21, 28, 5, 13, 23, 34, 46, 58, 8, 21, 37, 55, 74, 94, 114, 13, 34, 60, 89, 120, 152, 185, 218, 21, 55, 97, 144, 194, 246, 299, 353, 407, 34, 89, 157, 233, 314, 398, 484, 571, 659, 747, 55, 144, 254, 377, 508, 644, 783

OFFSET

0,3

COMMENTS

See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.

EXAMPLE

First six rows:

1

1...2

1...3....5

2...5....9....13

3...8....14...21...28

5...13...23...34...46...58

MATHEMATICA

z = 12;

p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];

q[n_, x_] := x*q[n - 1, x] + n + 1; q[0, x_] := 1

t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;

w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1

g[n_] := CoefficientList[w[n, x], {x}]

TableForm[Table[Reverse[g[n]], {n, -1, z}]]

Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193953 *)

TableForm[Table[g[n], {n, -1, z}]]

Flatten[Table[g[n], {n, -1, z}]] (* A193954 *)

CROSSREFS
KEYWORD

allocated

nonn,tabl

AUTHOR

Clark Kimberling (ck6(AT)evansville.edu), Aug 10 2011

STATUS

approved

editing

#1 by Clark Kimberling at Wed Aug 10 11:07:59 EDT 2011
NAME

allocated for Clark Kimberling

KEYWORD

allocated

STATUS

approved