[go: up one dir, main page]

login
Revision History for A191348 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Array read by antidiagonals: ((ceiling(sqrt(n)) + sqrt(n))^k + (ceiling(sqrt(n)) - sqrt(n))^k)/2 for columns k >= 0 and rows n >= 0.
(history; published version)
#14 by Michel Marcus at Sun Nov 17 01:43:07 EST 2019
STATUS

reviewed

approved

#13 by Joerg Arndt at Sun Nov 17 01:42:56 EST 2019
STATUS

proposed

reviewed

#12 by Jon E. Schoenfield at Sun Nov 17 01:19:04 EST 2019
STATUS

editing

proposed

#11 by Jon E. Schoenfield at Sun Nov 17 01:19:01 EST 2019
NAME

Array read by antidiagonals: ((ceilceiling(sqrt(n)) + sqrt(n))^k + (ceilceiling(sqrt(n)) - sqrt(n))^k)/2 for columns k >= 0 and rows n >= 0.

FORMULA

For each row n >= 0 let T(n,0)=1 and T(n,1) =ceil ceiling(sqrt(n)), then for each column k >= 2: T(n,k) = T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2. - Charles L. Hohn, Aug 23 2019

CROSSREFS

Cf. A191347 which uses floor() in place of ceilceiling().

STATUS

approved

editing

#10 by Bruno Berselli at Fri Aug 23 03:59:25 EDT 2019
STATUS

reviewed

approved

#9 by Joerg Arndt at Fri Aug 23 03:58:39 EDT 2019
STATUS

proposed

reviewed

#8 by Charles L. Hohn at Fri Aug 23 03:55:31 EDT 2019
STATUS

editing

proposed

#7 by Charles L. Hohn at Fri Aug 23 03:50:34 EDT 2019
NAME

Array read by antidiagonals: ((ceil(sqrt(xn)) + sqrt(x))^n))^k + (ceil(sqrt(xn)) - sqrt(x))^n))^k)/2 for all xcolumns k >= 0 and rows n >= 0.

FORMULA

For each row n>=0 let T(n,0)=1 and T(n,1)=ceil(sqrt(n)), then for each column k>=2: T(n,k)=T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2. - Charles L. Hohn, Aug 23 2019

EXAMPLE

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ...

1, 2, 6, 20, 68, 232, 792, 2704, 9232, 31520, 107616, ...

1, 2, 7, 26, 97, 362, 1351, 5042, 18817, 70226, 262087, ...

1, 2, 8, 32, 128, 512, 2048, 8192, 32768, 131072, 524288, ...

1, 3, 14, 72, 376, 1968, 10304, 53952, 282496, 1479168, 7745024, ...

1, 3, 15, 81, 441, 2403, 13095, 71361, 388881, 2119203, 11548575, ...

1, 3, 16, 90, 508, 2868, 16192, 91416, 516112, 2913840, 16450816, ...

1, 3, 17, 99, 577, 3363, 19601, 114243, 665857, 3880899, 22619537, ...

1, 3, 18, 108, 648, 3888, 23328, 139968, 839808, 5038848, 30233088, ...

1, 4, 26, 184, 1316, 9424, 67496, 483424, 3462416, 24798784, 177615776, ...

1, 4, 27, 196, 1433, 10484, 76707, 561236, 4106353, 30044644, 219825387, ...

1, 4, 28, 208, 1552, 11584, 86464, 645376, 4817152, 35955712, 268377088, ...

1, 4, 29, 220, 1673, 12724, 96773, 736012, 5597777, 42574180, 323800109, ...

1, 4, 30, 232, 1796, 13904, 107640, 833312, 6451216, 49943104, 386642400, ...

PROG

(PARI) T(n, k) = if (k==0, 1, if (k==1, ceil(sqrt(n)), T(n, k-2)*(n-T(n, 1)^2) + T(n, k-1)*T(n, 1)*2));

matrix(9, 9, n, k, T(n-1, k-1)) \\ Charles L. Hohn, Aug 23 2019

STATUS

approved

editing

Discussion
Fri Aug 23
03:55
Charles L. Hohn: Updated to align with changes just made and approved to A191347
#6 by Russ Cox at Sat Mar 31 10:26:21 EDT 2012
AUTHOR

_Charles L. Hohn (ch+oeis(AT)1111-internet.com), _, May 31 2011

Discussion
Sat Mar 31
10:26
OEIS Server: https://oeis.org/edit/global/495
#5 by N. J. A. Sloane at Fri Jun 10 10:23:23 EDT 2011
STATUS

proposed

approved