[go: up one dir, main page]

login
Revision History for A191238 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Triangle T(n,k) = coefficient of x^n in expansion of (x+x^3+x^5)^k.
(history; published version)
#31 by Joerg Arndt at Sun Oct 20 02:31:53 EDT 2024
STATUS

proposed

approved

#30 by Jason Yuen at Sun Oct 20 02:28:22 EDT 2024
STATUS

editing

proposed

#29 by Jason Yuen at Sun Oct 20 02:27:56 EDT 2024
FORMULA

T(n,k)} = Sum_{j=0..k } binomial(j,((n-k-2*j)/2))*binomial(k,j)*((-1)^(n-k)+1))/2.

STATUS

approved

editing

#28 by R. J. Mathar at Wed Aug 14 11:50:42 EDT 2024
STATUS

editing

approved

#27 by R. J. Mathar at Wed Aug 14 11:50:36 EDT 2024
MAPLE

end proc:

end proc: seq(seq(A191238(n, m), m=1..n), n=1..10) ; # R. J. Mathar, Dec 16 2015

STATUS

approved

editing

#26 by Michael De Vlieger at Sun Oct 30 10:02:49 EDT 2022
STATUS

proposed

approved

#25 by Michel Marcus at Sun Oct 30 09:41:55 EDT 2022
STATUS

editing

proposed

#24 by Michel Marcus at Sun Oct 30 09:41:18 EDT 2022
LINKS

Vladimir Kruchinin and D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013.

Vladimir Kruchinin, <a href="http://arxiv.org/abs/1104.5065">Derivation of Bell Polynomials of the Second Kind</a>, arXiv:1104.5065 [math.CO], 2011.

Vladimir Kruchinin, <a href="http://arxiv.org/abs/1104.5065">Derivation of Bell Polynomials of the Second Kind</a>, arXiv:1104.5065 [math.CO], 2011.

Vladimir Kruchinin and D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013.

#23 by Michel Marcus at Sun Oct 30 09:40:53 EDT 2022
LINKS

Vladimir Kruchinin, and D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013.

Vladimir Kruchinin, <a href="http://arxiv.org/abs/1104.5065">Derivation of Bell Polynomials of the Second Kind</a>, arXiv:1104.5065 [math.CO], 2011.

Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Janjic/janjic73.html">Binomial Coefficients and Enumeration of Restricted Words</a>, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.

FORMULA

T(n,k)} =sum( Sum_{j=0..k, binomial(j,((n-k-2*j)/2))*binomial(k,j)*((-1)^(n-k)+1))/2.

EXAMPLE

triangle Triangle begins:

1,

0,1,

1,0,1,

0,2,0,1,

1,0,3,0,1,

0,3,0,4,0,1,

0,0,6,0,5,0,1,

0,2,0,10,0,6,0,1,

0,0,7,0,15,0,7,0,1,

0,1,0,16,0,21,0,8,0,1

STATUS

approved

editing

#22 by N. J. A. Sloane at Fri Jul 03 14:55:05 EDT 2020
LINKS

Milan Janjic, <a href="httphttps://www.emiscs.amsuwaterloo.orgca/journals/JIS/VOL19/Janjic/janjic73.html">Binomial Coefficients and Enumeration of Restricted Words</a>, Journal of Integer Sequences, 2016, Vol 19, #16.7.3

Discussion
Fri Jul 03
14:55
OEIS Server: https://oeis.org/edit/global/2859