[go: up one dir, main page]

login
Revision History for A189742 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(1)=4, a(2)=3, a(n) = 4*a(n-1) + 3*a(n-2).
(history; published version)
#31 by Joerg Arndt at Sun Feb 18 03:35:17 EST 2024
STATUS

editing

approved

#30 by Joerg Arndt at Sun Feb 18 03:35:15 EST 2024
NAME

a(1)=4, a(2)=3, a(n) = 4*a(n-1) + 3*a(n-2).

STATUS

proposed

editing

#29 by Stefano Spezia at Sun Feb 18 03:25:25 EST 2024
STATUS

editing

proposed

#28 by Stefano Spezia at Sun Feb 18 03:25:23 EST 2024
KEYWORD

nonn,easy,changed

STATUS

proposed

editing

#27 by Michel Marcus at Sun Feb 18 03:17:18 EST 2024
STATUS

editing

proposed

#26 by Michel Marcus at Sun Feb 18 03:17:12 EST 2024
NAME

a(1)=4, a(2)=3, a(n)=4*a(n-1) + 3*a(n-2).

LINKS

<a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4, 3).

FORMULA

G.f.: x*(4-13*x)/(1-4*x-3*x^2). - _Bruno Berselli, _, May 24 2011

PROG

(Maxima) a[1]:4$ a[2]:3$ a[n]:=4*a[n-1]+3*a[n-2]$ makelist(a[n], n, 1, 24); [/* _Bruno Berselli, _, May 24 2011] */

STATUS

approved

editing

#25 by Joerg Arndt at Sun Dec 31 10:23:50 EST 2023
STATUS

editing

approved

#24 by Paolo P. Lava at Sun Dec 31 09:49:29 EST 2023
FORMULA

a(n) = 5/14*sqrt(7)*((2-sqrt(7))^(n-1)-(2+sqrt(7))^(n-1))+2*((2-sqrt(7))^(n-1)+(2 +sqrt(7))^(n-1)). - Paolo P. Lava, May 24 2011

STATUS

approved

editing

#23 by Ray Chandler at Sat Aug 01 09:26:51 EDT 2015
STATUS

editing

approved

#22 by Ray Chandler at Sat Aug 01 09:26:48 EDT 2015
LINKS

<a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4, 3).

STATUS

approved

editing