STATUS
editing
approved
editing
approved
Harvey P. Dale, <a href="/A188682/b188682.txt">Table of n, a(n) for n = 0..606</a>
approved
editing
editing
approved
Accumulate[Table[Binomial[3n, n]^2/(2n+1), {n, 0, 20}]] (* Harvey P. Dale, Jul 10 2016 *)
approved
editing
proposed
approved
editing
proposed
a(n) ~ 3^(6*n+7)/(713*Pi*n^2*2^(4*n+3)). - Vaclav Kotesovec, Aug 06 2013
approved
editing
_Emanuele Munarini (emanuele.munarini(AT)polimi.it), _, Apr 08 2011
proposed
approved
Partial sums of binomials bin(3n,n)^2/(2n+1).
a(n) = sum(bin(3k,3*k,k)^2/(2k2*k+1),k=0..n).
Recurrence: 4*(n+2)^2*(4*n^2+16*n+15) * a(n+2) -(745*n^4+4502*n^3+10181*n^2+10216*n+3840) * a(n+1) +9*(9*n^2+27*n+20)^2 *a(n) = 0.