reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
.. 5.. 4.. 3.... 1.. 0.. 5.... 5.. 0.. 1.... 2.. 1.. 0.... 0.. 1.. 0.... 1.. 0.. 0.... 5.. 0.. 0
.. 0.. 1.. 2.... 2.. 3.. 4.... 4.. 3.. 2.... 3.. 4.. 5.... 0.. 2.. 3.... 2.. 0.. 0.... 4.. 3.. 0
.. 0.. 0.. 0.... 0.. 0.. 0.... 0.. 0.. 0.... 0.. 0.. 0.... 0.. 5.. 4.... 3.. 4.. 5.... 1.. 2.. 0
reviewed
editing
proposed
reviewed
editing
proposed
Number of 5-step self-avoiding walks on an n X n square summed over all starting positions.
Row 5 of A188147.
Empirical: a(n) = 100*n^2 - 360*n + 272 for n>3.
Conjectures from Colin Barker, Apr 27 2018: (Start)
G.f.: 4*x^3*(26 + 30*x - 3*x^2 - 3*x^3) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>6.
(End)
Some solutions for 3X33 X 3:
Cf. A188147.
R. H. Hardin , Mar 22 2011
approved
editing
Number of 5-step self-avoiding walks on a an n X n square summed over all starting positions
Number of 5-step self-avoiding walks on a nXn n X n square summed over all starting positions
_R. H. Hardin (rhhardin(AT)att.net) _ Mar 22 2011