(MAGMAMagma) sol:=[]; for n in [1..70] do k:=n; while not IsPrime(3^n+3^k-1) and k gt 0 do k:=k-1; end while; if k ge 0 then Append(~sol, k); else Append(~sol, 0); end if; end for; sol; // Marius A. Burtea, Sep 16 2019
(MAGMAMagma) sol:=[]; for n in [1..70] do k:=n; while not IsPrime(3^n+3^k-1) and k gt 0 do k:=k-1; end while; if k ge 0 then Append(~sol, k); else Append(~sol, 0); end if; end for; sol; // Marius A. Burtea, Sep 16 2019
reviewed
approved
proposed
reviewed
editing
proposed
For n = 154, for k = 0, 1, 2, 3, ... , , 154, the numbers 3^154 + 3^k - 1 are respectively divisible by 3, 5531, 73, 5, 7, 19001, 6553, 5, 239, 3541, 7, 5, 33247, 71, 19, 5, 7, 29, 1973, 5, 436467739, 71161, 7, 5, 4283, 37, 73, 5, 7, 11177, 13721, 5, 19, 29207, 7, 5, 64849, 4001, 73, 5, 7, 31, 227009113, 5, 139, 29, 7, 5, 71, 107102231, 19, 5, 7, 10765021647412056860623883, 521, 5, 241, 1448445976112887644909473, 7, 5, 5657, 37, 73, 5, 7, 110661029, 65963, 5, 19, 20411, 7, 5, 331, 29, 73, 5, 7, 7671791, 269, 5, 563, 211, 7, 5, 6553, 113, 19, 5, 7, 425679689, 1301, 5, 334244063, 53, 7, 5, 15254167, 37, 73, 5, 7, 29, 3391, 5, 19, 7727, 7, 5, 4799, 2269, 73, 5, 7, 1822597729, 47, 5, 242496218184092003, 38971, 7, 5, 9994245487379630507640393493999, 9104413, 19, 5, 7, 3581, 1039, 5, 181, 29, 7, 5, 2472681219552827727900539, 37, 73, 5, 7, 47, 99986141, 5, 19, 1237, 7, 5, 55817, 53, 73, 5, 7, 1033, 9187, 5, 199, 71, 7. So a(154) = 0.
reviewed
editing
proposed
reviewed
editing
proposed
If For n = 154, for k = 0, 1, 2, 3, ... , 154, the numbers 3^154 + 3^k - 1 are respectively divisible by 3, 5531, 73, 5, 7, 19001, 6553, 5, 239, 3541, 7, 5, 33247, 71, 19, 5, 7, 29, 1973, 5, 436467739, 71161, 7, 5, 4283, 37, 73, 5, 7, 11177, 13721, 5, 19, 29207, 7, 5, 64849, 4001, 73, 5, 7, 31, 227009113, 5, 139, 29, 7, 5, 71, 107102231, 19, 5, 7, 10765021647412056860623883, 521, 5, 241, 1448445976112887644909473, 7, 5, 5657, 37, 73, 5, 7, 110661029, 65963, 5, 19, 20411, 7, 5, 331, 29, 73, 5, 7, 7671791, 269, 5, 563, 211, 7, 5, 6553, 113, 19, 5, 7, 425679689, 1301, 5, 334244063, 53, 7, 5, 15254167, 37, 73, 5, 7, 29, 3391, 5, 19, 7727, 7, 5, 4799, 2269, 73, 5, 7, 1822597729, 47, 5, 242496218184092003, 38971, 7, 5, 9994245487379630507640393493999, 9104413, 19, 5, 7, 3581, 1039, 5, 181, 29, 7, 5, 2472681219552827727900539, 37, 73, 5, 7, 47, 99986141, 5, 19, 1237, 7, 5, 55817, 53, 73, 5, 7, 1033, 9187, 5, 199, 71, 7. So a(154) = 0.
proposed
editing
editing
proposed
If n = 154, for k = 0, 1, 2, 3, ... , 154, the numbers 3^154 + 3^k - 1 are respectively divisible by 3, 5531, 73, 5, 7, 19001, 6553, 5, 239, 3541, 7, 5, 33247, 71, 19, 5, 7, 29, 1973, 5, 436467739, 71161, 7, 5, 4283, 37, 73, 5, 7, 11177, 13721, 5, 19, 29207, 7, 5, 64849, 4001, 73, 5, 7, 31, 227009113, 5, 139, 29, 7, 5, 71, 107102231, 19, 5, 7, 10765021647412056860623883, 521, 5, 241, 1448445976112887644909473, 7, 5, 5657, 37, 73, 5, 7, 110661029, 65963, 5, 19, 20411, 7, 5, 331, 29, 73, 5, 7, 7671791, 269, 5, 563, 211, 7, 5, 6553, 113, 19, 5, 7, 425679689, 1301, 5, 334244063, 53, 7, 5, 15254167, 37, 73, 5, 7, 29, 3391, 5, 19, 7727, 7, 5, 4799, 2269, 73, 5, 7, 1822597729, 47, 5, 242496218184092003, 38971, 7, 5, 9994245487379630507640393493999, 9104413, 19, 5, 7, 3581, 1039, 5, 181, 29, 7, 5, 2472681219552827727900539, 37, 73, 5, 7, 47, 99986141, 5, 19, 1237, 7, 5, 55817, 53, 73, 5, 7, 1033, 9187, 5, 199, 71, 7. So a(154) = 0.