[go: up one dir, main page]

login
Revision History for A181530 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Greatest k <= n such that 3^n + 3^k - 1 is prime, or 0 if no such prime exists.
(history; published version)
#29 by Charles R Greathouse IV at Thu Sep 08 08:45:54 EDT 2022
PROG

(MAGMAMagma) sol:=[]; for n in [1..70] do k:=n; while not IsPrime(3^n+3^k-1) and k gt 0 do k:=k-1; end while; if k ge 0 then Append(~sol, k); else Append(~sol, 0); end if; end for; sol; // Marius A. Burtea, Sep 16 2019

Discussion
Thu Sep 08
08:45
OEIS Server: https://oeis.org/edit/global/2944
#28 by Sean A. Irvine at Sun Sep 22 22:17:37 EDT 2019
STATUS

reviewed

approved

#27 by Jon E. Schoenfield at Sun Sep 22 20:02:24 EDT 2019
STATUS

proposed

reviewed

#26 by Jon E. Schoenfield at Sun Sep 22 04:37:12 EDT 2019
STATUS

editing

proposed

#25 by Jon E. Schoenfield at Sun Sep 22 04:36:34 EDT 2019
EXAMPLE

For n = 154, for k = 0, 1, 2, 3, ... , , 154, the numbers 3^154 + 3^k - 1 are respectively divisible by 3, 5531, 73, 5, 7, 19001, 6553, 5, 239, 3541, 7, 5, 33247, 71, 19, 5, 7, 29, 1973, 5, 436467739, 71161, 7, 5, 4283, 37, 73, 5, 7, 11177, 13721, 5, 19, 29207, 7, 5, 64849, 4001, 73, 5, 7, 31, 227009113, 5, 139, 29, 7, 5, 71, 107102231, 19, 5, 7, 10765021647412056860623883, 521, 5, 241, 1448445976112887644909473, 7, 5, 5657, 37, 73, 5, 7, 110661029, 65963, 5, 19, 20411, 7, 5, 331, 29, 73, 5, 7, 7671791, 269, 5, 563, 211, 7, 5, 6553, 113, 19, 5, 7, 425679689, 1301, 5, 334244063, 53, 7, 5, 15254167, 37, 73, 5, 7, 29, 3391, 5, 19, 7727, 7, 5, 4799, 2269, 73, 5, 7, 1822597729, 47, 5, 242496218184092003, 38971, 7, 5, 9994245487379630507640393493999, 9104413, 19, 5, 7, 3581, 1039, 5, 181, 29, 7, 5, 2472681219552827727900539, 37, 73, 5, 7, 47, 99986141, 5, 19, 1237, 7, 5, 55817, 53, 73, 5, 7, 1033, 9187, 5, 199, 71, 7. So a(154) = 0.

STATUS

reviewed

editing

#24 by Joerg Arndt at Sun Sep 22 03:38:17 EDT 2019
STATUS

proposed

reviewed

#23 by Joerg Arndt at Sat Sep 21 02:47:20 EDT 2019
STATUS

editing

proposed

#22 by Joerg Arndt at Sat Sep 21 02:47:16 EDT 2019
EXAMPLE

If For n = 154, for k = 0, 1, 2, 3, ... , 154, the numbers 3^154 + 3^k - 1 are respectively divisible by 3, 5531, 73, 5, 7, 19001, 6553, 5, 239, 3541, 7, 5, 33247, 71, 19, 5, 7, 29, 1973, 5, 436467739, 71161, 7, 5, 4283, 37, 73, 5, 7, 11177, 13721, 5, 19, 29207, 7, 5, 64849, 4001, 73, 5, 7, 31, 227009113, 5, 139, 29, 7, 5, 71, 107102231, 19, 5, 7, 10765021647412056860623883, 521, 5, 241, 1448445976112887644909473, 7, 5, 5657, 37, 73, 5, 7, 110661029, 65963, 5, 19, 20411, 7, 5, 331, 29, 73, 5, 7, 7671791, 269, 5, 563, 211, 7, 5, 6553, 113, 19, 5, 7, 425679689, 1301, 5, 334244063, 53, 7, 5, 15254167, 37, 73, 5, 7, 29, 3391, 5, 19, 7727, 7, 5, 4799, 2269, 73, 5, 7, 1822597729, 47, 5, 242496218184092003, 38971, 7, 5, 9994245487379630507640393493999, 9104413, 19, 5, 7, 3581, 1039, 5, 181, 29, 7, 5, 2472681219552827727900539, 37, 73, 5, 7, 47, 99986141, 5, 19, 1237, 7, 5, 55817, 53, 73, 5, 7, 1033, 9187, 5, 199, 71, 7. So a(154) = 0.

STATUS

proposed

editing

#21 by Marius A. Burtea at Tue Sep 17 16:13:29 EDT 2019
STATUS

editing

proposed

#20 by Marius A. Burtea at Tue Sep 17 15:00:21 EDT 2019
EXAMPLE

If n = 154, for k = 0, 1, 2, 3, ... , 154, the numbers 3^154 + 3^k - 1 are respectively divisible by 3, 5531, 73, 5, 7, 19001, 6553, 5, 239, 3541, 7, 5, 33247, 71, 19, 5, 7, 29, 1973, 5, 436467739, 71161, 7, 5, 4283, 37, 73, 5, 7, 11177, 13721, 5, 19, 29207, 7, 5, 64849, 4001, 73, 5, 7, 31, 227009113, 5, 139, 29, 7, 5, 71, 107102231, 19, 5, 7, 10765021647412056860623883, 521, 5, 241, 1448445976112887644909473, 7, 5, 5657, 37, 73, 5, 7, 110661029, 65963, 5, 19, 20411, 7, 5, 331, 29, 73, 5, 7, 7671791, 269, 5, 563, 211, 7, 5, 6553, 113, 19, 5, 7, 425679689, 1301, 5, 334244063, 53, 7, 5, 15254167, 37, 73, 5, 7, 29, 3391, 5, 19, 7727, 7, 5, 4799, 2269, 73, 5, 7, 1822597729, 47, 5, 242496218184092003, 38971, 7, 5, 9994245487379630507640393493999, 9104413, 19, 5, 7, 3581, 1039, 5, 181, 29, 7, 5, 2472681219552827727900539, 37, 73, 5, 7, 47, 99986141, 5, 19, 1237, 7, 5, 55817, 53, 73, 5, 7, 1033, 9187, 5, 199, 71, 7. So a(154) = 0.

Discussion
Tue Sep 17
15:06
Marius A. Burtea: Example. I think it's complete.