[go: up one dir, main page]

login
Revision History for A176991 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Triangle t(n,m) = binomial(n+m,m) - binomial(n-m,m), 1<=m<=n, read by rows.
(history; published version)
#8 by Charles R Greathouse IV at Wed Mar 12 16:37:17 EDT 2014
AUTHOR

_Roger L. Bagula_, Dec 08 2010

Discussion
Wed Mar 12
16:37
OEIS Server: https://oeis.org/edit/global/2126
#7 by Russ Cox at Fri Mar 30 18:49:27 EDT 2012
AUTHOR

_Roger Bagula (rlbagulatftn(AT)yahoo.com), _, Dec 08 2010

Discussion
Fri Mar 30
18:49
OEIS Server: https://oeis.org/edit/global/236
#6 by T. D. Noe at Tue Dec 14 11:12:48 EST 2010
STATUS

reviewed

approved

#5 by Joerg Arndt at Tue Dec 14 10:06:16 EST 2010
STATUS

proposed

reviewed

#4 by R. J. Mathar at Tue Dec 14 09:57:07 EST 2010
NAME

A triangle sequence:Triangle t(n,m) =Binomial binomial(n + (m - 1), (,m - 1)) - Binomialbinomial(n - (m - 1), (,m - ), 1))<=m<=n, read by rows.

COMMENTS

Row sums are: { binomial(2n+1,n+1)-1-A000071(n+1) = A001700(n)-A000045(n+1) = 2, 8, 32, 121, 454, 1703, 6414, 24276, 92323, 352627,...}.

FORMULA

t(n,m) =Binomial A046899(n + (m - 1), (,m - 1)) - BinomialA011973(n - (,m - 1), (0<=m - 1))<=n/2.

EXAMPLE

{2},

2;

{2, 6},;

{2, 10, 20},;

{2, 14, 35, 70},;

{2, 18, 56, 126, 252},;

{2, 22, 83, 210, 462, 924},;

{2, 26, 116, 330, 792, 1716, 3432},;

{2, 30, 155, 494, 1287, 3003, 6435, 12870},;

{2, 34, 200, 710, 2002, 5005, 11440, 24310, 48620},;

{2, 38, 251, 986, 3002, 8008, 19448, 43758, 92378, 184756};

CROSSREFS
#3 by Roger Bagula at Wed Dec 08 08:35:10 EST 2010
NAME

allocated for Roger Bagula

A triangle sequence:t(n,m)=Binomial(n + (m - 1), (m - 1)) - Binomial(n - (m - 1), (m - 1))

DATA

2, 2, 6, 2, 10, 20, 2, 14, 35, 70, 2, 18, 56, 126, 252, 2, 22, 83, 210, 462, 924, 2, 26, 116, 330, 792, 1716, 3432, 2, 30, 155, 494, 1287, 3003, 6435, 12870, 2, 34, 200, 710, 2002, 5005, 11440, 24310, 48620, 2, 38, 251, 986, 3002, 8008, 19448, 43758, 92378, 184756

OFFSET

1,1

COMMENTS

Row sums are: {2, 8, 32, 121, 454, 1703, 6414, 24276, 92323, 352627,...}.

FORMULA

t(n,m)=Binomial(n + (m - 1), (m - 1)) - Binomial(n - (m - 1), (m - 1))

EXAMPLE

{2},

{2, 6},

{2, 10, 20},

{2, 14, 35, 70},

{2, 18, 56, 126, 252},

{2, 22, 83, 210, 462, 924},

{2, 26, 116, 330, 792, 1716, 3432},

{2, 30, 155, 494, 1287, 3003, 6435, 12870},

{2, 34, 200, 710, 2002, 5005, 11440, 24310, 48620},

{2, 38, 251, 986, 3002, 8008, 19448, 43758, 92378, 184756}

MATHEMATICA

t[n_, m_] = Binomial[n + (m - 1), (m - 1)] - Binomial[n - (m - 1), (m - 1)];

Table[Table[t[n, m], {m, 2, n + 1}], {n, 1, 10}];

Flatten[%]

CROSSREFS
KEYWORD

allocated

nonn,tabl

AUTHOR

Roger Bagula (rlbagulatftn(AT)yahoo.com), Dec 08 2010

STATUS

approved

proposed

#2 by Roger Bagula at Wed Dec 08 08:35:10 EST 2010
NAME

allocated for Roger Bagula

KEYWORD

recycled

allocated

#1 by Russ Cox at Fri Nov 12 14:25:16 EST 2010
KEYWORD

recycled

STATUS

approved