[go: up one dir, main page]

login
Revision History for A176609 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=5, k=0 and l=1.
(history; published version)
#4 by R. J. Mathar at Tue Mar 01 16:14:28 EST 2016
STATUS

editing

approved

#3 by R. J. Mathar at Tue Mar 01 16:14:23 EST 2016
FORMULA

Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(-7*n+19)*a(n-2) +24*(n-3)*a(n-3) +12*(-n+4)*a(n-4)=0. - R. J. Mathar, Mar 01 2016

STATUS

approved

editing

#2 by Charles R Greathouse IV at Wed Dec 19 15:50:23 EST 2012
AUTHOR

_Richard Choulet (richardchoulet(AT)yahoo.fr), _, Apr 21 2010

Discussion
Wed Dec 19
15:50
OEIS Server: https://oeis.org/edit/global/1844
#1 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=5, k=0 and l=1.

DATA

1, 5, 11, 48, 207, 1016, 5159, 27337, 148489, 824232, 4650657, 26602827, 153900879, 898909266, 5293577451, 31395570786, 187364023083, 1124308178270, 6779554362911, 41059231942321, 249646266800185, 1523286825246798

OFFSET

0,2

FORMULA

G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=1).

EXAMPLE

a(2)=2*1*5+1=11. a(3)=2*1*11+5^2+1=48.

MAPLE

l:=1: : k := 0 : m :=5: d(0):=1:d(1):=m: for n from 1 to 28 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :

taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 31); seq(d(n), n=0..29);

CROSSREFS
KEYWORD

easy,nonn

AUTHOR

Richard Choulet (richardchoulet(AT)yahoo.fr), Apr 21 2010

STATUS

approved