G. C. Greubel, <a href="/A174947/b174947_1.txt">Rows n = 1..50 of the triangle, flattened</a>
G. C. Greubel, <a href="/A174947/b174947_1.txt">Rows n = 1..50 of the triangle, flattened</a>
proposed
approved
editing
proposed
(PARI) trga(nrows) = {for (n=1, nrows, for (k=1, n, print1(sigma(prime(n)) % prime(k), ", "); ); print(); ); } \\ Michel Marcus, Apr 11 2013
proposed
editing
editing
proposed
Triangle read by rows: RT(n,k) = (prime(n)+1) mod prime(k).
1, 0, 1, 0, 0, 1, 0, 2, 3, 1, 0, 0, 2, 5, 1, 0, 2, 4, 0, 3, 1, 0, 0, 3, 4, 7, 5, 1, 0, 2, 0, 6, 9, 7, 3, 1, 0, 0, 4, 3, 2, 11, 7, 5, 1, 0, 0, 0, 2, 8, 4, 13, 11, 7, 1, 0, 2, 2, 4, 10, 6, 15, 13, 9, 3, 1, 0, 2, 3, 3, 5, 12, 4, 0, 15, 9, 7, 1, 0, 0, 2, 0, 9, 3, 8, 4, 19, 13, 11, 5, 1, 0, 2, 4, 2, 0, 5, 10, 6, 21, 15, 13, 7, 3, 1
Triangle read by rows: RT(n,k) = Sigma(prime(n)) mod prime(k), where Sigma(prime(.)) is the sum of divisors of prime.
G. C. Greubel, <a href="/A174947/b174947_1.txt">Rows n = 1..50 of the triangle, flattened</a>
1;
0, 1;
0, 0, 1;
0, 2, 3, 1;
0, 0, 2, 5, 1;
0, 2, 4, 0, 3, 1;
0, 0, 3, 4, 7, 5, 1;
0, 2, 0, 6, 9, 7, 3, 1;
0, 0, 4, 3, 2, 11, 7, 5, 1;
0, 0, 0, 2, 8, 4, 13, 11, 7, 1;
Table[Mod[1+Prime[n], Prime[k]], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Apr 10 2024 *)
(Magma)
[(1+NthPrime(n)) mod NthPrime(k): k in [1..n], n in [1..15]]; // G. C. Greubel, Apr 10 2024
(SageMath)
flatten([[(1+nth_prime(n))%nth_prime(k) for k in range(1, n+1)] for n in range(1, 16)]) # G. C. Greubel, Apr 10 2024
approved
editing
proposed
approved
editing
proposed
Triangle begins
1;
0, 1;
0, 0, 1;
0, 2, 3, 1;
0, 0, 2, 5, 1;
(PARI)trga(nrows) = {for (n=1, nrows, for (k=1, n, print1(sigma(prime(n)) % prime(k), ", "); ); print(); ); } \\ Michel Marcus, Apr 11 2013
nonn,tabl
approved
editing