[go: up one dir, main page]

login
Revision History for A173493 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of distinct squares that can be partitioned into distinct divisors of n.
(history; published version)
#7 by Michael De Vlieger at Sun Nov 06 07:49:02 EST 2022
STATUS

reviewed

approved

#6 by Joerg Arndt at Sun Nov 06 03:18:37 EST 2022
STATUS

proposed

reviewed

#5 by Michel Marcus at Sun Nov 06 03:05:24 EST 2022
STATUS

editing

proposed

#4 by Michel Marcus at Sun Nov 06 03:03:07 EST 2022
COMMENTS

a(n) <= A078705(n);

a(A173494(n)) = 1;

the The partitions of the squares are generally not unique, see examples.

LINKS

R. Reinhard Zumkeller, <a href="/A173493/b173493.txt">Table of n, a(n) for n = 1..250</a>

FORMULA

a(n) <= A078705(n).

a(A173494(n)) = 1.

EXAMPLE

2^2 = 4 = 3 + 1,

3^2 = 6 + 3 = 6 + 2 + 1 = 4 + 3 + 2,

4^2 = 12 + 4 = 12 + 3 + 1 = 6 + 4 + 3 + 2 + 1,

5^2 = 12 + 6 + 4 + 3 = 12 + 6 + 4 + 2 + 1;

2^2 = 3+1,

3^2 = 7+2 = 6+3 = 6+2+1,

4^2 = 14+2 = 7+6+3 = 7+6+2+1,

5^2 = 21 + 3 + 1 = 14 + 7 + 3 + 1 = 14 + 6 + 3 + 2,

6^2 = 21 + 14 + 1 = 21 + 7 + 6 + 2,

7^2 = 42 + 7 = 42 + 6 + 1 = 21 + 14 + 7 + 6 + 1,

8^2 = 42 + 21 + 1 = 42 + 14 + 7 + 1 = 42 + 14 + 6 + 2,

9^2 = 42 + 21 + 14 + 3 + 1 = 42 + 21 + 7 + 6 + 3 + 2.

CROSSREFS
STATUS

approved

editing

#3 by Russ Cox at Fri Mar 30 18:51:05 EDT 2012
AUTHOR

_Reinhard Zumkeller (reinhard.zumkeller(AT)gmail.com), _, Feb 20 2010

Discussion
Fri Mar 30
18:51
OEIS Server: https://oeis.org/edit/global/246
#2 by N. J. A. Sloane at Thu Nov 11 07:34:06 EST 2010
LINKS

R. Zumkeller, <a href="/A173493/b173493.txt">Table of n, a(n) for n = 1..250</a>

KEYWORD

nonn,new

nonn

#1 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

Number of distinct squares that can be partitioned into distinct divisors of n.

DATA

1, 1, 2, 2, 1, 3, 1, 3, 3, 2, 1, 5, 1, 3, 4, 5, 1, 6, 1, 6, 3, 3, 1, 7, 2, 2, 4, 7, 1, 8, 1, 7, 3, 2, 2, 9, 1, 1, 3, 9, 1, 9, 1, 7, 7, 3, 1, 11, 2, 5, 2, 4, 1, 10, 2, 10, 2, 1, 1, 12, 1, 2, 7, 11, 1, 12, 1, 4, 2, 11, 1, 13, 1, 1, 9, 7, 1, 12, 1, 13, 6, 1, 1, 14, 1, 1, 2, 13, 1, 15, 1, 6, 2, 3, 3, 15, 1, 8

OFFSET

1,3

COMMENTS

a(n) <= A078705(n);

a(A173494(n)) = 1;

the partitions of the squares are generally not unique, see examples.

LINKS

R. Zumkeller, <a href="b173493.txt">Table of n, a(n) for n = 1..250</a>

EXAMPLE

divisors(9) = {1, 3, 9}: a(9) = #{1, 3+1, 9} = 3;

divisors(10) = {1, 2, 5, 10}: a(10) = #{1, 10+5+1} = 2;

divisors(12) = {1,2,3,4,6,12}: a(12) = #{1,4,9,16,25} = 5:

2^2 = 4 = 3 + 1,

3^2 = 6 + 3 = 6 + 2 + 1 = 4 + 3 + 2,

4^2 = 12 + 4 = 12 + 3 + 1 = 6 + 4 + 3 + 2 + 1,

5^2 = 12 + 6 + 4 + 3 = 12 + 6 + 4 + 2 + 1;

divisors(42)={1,2,3,6,7,14,21,42}: a(42)=#{k^2: 1<=k<=9}=9:

2^2 = 3+1,

3^2 = 7+2 = 6+3 = 6+2+1,

4^2 = 14+2 = 7+6+3 = 7+6+2+1,

5^2 = 21 + 3 + 1 = 14 + 7 + 3 + 1 = 14 + 6 + 3 + 2,

6^2 = 21 + 14 + 1 = 21 + 7 + 6 + 2,

7^2 = 42 + 7 = 42 + 6 + 1 = 21 + 14 + 7 + 6 + 1,

8^2 = 42 + 21 + 1 = 42 + 14 + 7 + 1 = 42 + 14 + 6 + 2,

9^2 = 42 + 21 + 14 + 3 + 1 = 42 + 21 + 7 + 6 + 3 + 2.

CROSSREFS
KEYWORD

nonn

AUTHOR

Reinhard Zumkeller (reinhard.zumkeller(AT)gmail.com), Feb 20 2010

STATUS

approved