reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
R. Reinhard Zumkeller, <a href="/A173493/b173493.txt">Table of n, a(n) for n = 1..250</a>
2^2 = 4 = 3 + 1,
3^2 = 6 + 3 = 6 + 2 + 1 = 4 + 3 + 2,
4^2 = 12 + 4 = 12 + 3 + 1 = 6 + 4 + 3 + 2 + 1,
5^2 = 12 + 6 + 4 + 3 = 12 + 6 + 4 + 2 + 1;
2^2 = 3+1,
3^2 = 7+2 = 6+3 = 6+2+1,
4^2 = 14+2 = 7+6+3 = 7+6+2+1,
5^2 = 21 + 3 + 1 = 14 + 7 + 3 + 1 = 14 + 6 + 3 + 2,
6^2 = 21 + 14 + 1 = 21 + 7 + 6 + 2,
7^2 = 42 + 7 = 42 + 6 + 1 = 21 + 14 + 7 + 6 + 1,
8^2 = 42 + 21 + 1 = 42 + 14 + 7 + 1 = 42 + 14 + 6 + 2,
9^2 = 42 + 21 + 14 + 3 + 1 = 42 + 21 + 7 + 6 + 3 + 2.
approved
editing
_Reinhard Zumkeller (reinhard.zumkeller(AT)gmail.com), _, Feb 20 2010
R. Zumkeller, <a href="/A173493/b173493.txt">Table of n, a(n) for n = 1..250</a>
nonn,new
nonn
Number of distinct squares that can be partitioned into distinct divisors of n.
1, 1, 2, 2, 1, 3, 1, 3, 3, 2, 1, 5, 1, 3, 4, 5, 1, 6, 1, 6, 3, 3, 1, 7, 2, 2, 4, 7, 1, 8, 1, 7, 3, 2, 2, 9, 1, 1, 3, 9, 1, 9, 1, 7, 7, 3, 1, 11, 2, 5, 2, 4, 1, 10, 2, 10, 2, 1, 1, 12, 1, 2, 7, 11, 1, 12, 1, 4, 2, 11, 1, 13, 1, 1, 9, 7, 1, 12, 1, 13, 6, 1, 1, 14, 1, 1, 2, 13, 1, 15, 1, 6, 2, 3, 3, 15, 1, 8
1,3
R. Zumkeller, <a href="b173493.txt">Table of n, a(n) for n = 1..250</a>
divisors(9) = {1, 3, 9}: a(9) = #{1, 3+1, 9} = 3;
divisors(10) = {1, 2, 5, 10}: a(10) = #{1, 10+5+1} = 2;
divisors(12) = {1,2,3,4,6,12}: a(12) = #{1,4,9,16,25} = 5:
2^2 = 4 = 3 + 1,
3^2 = 6 + 3 = 6 + 2 + 1 = 4 + 3 + 2,
4^2 = 12 + 4 = 12 + 3 + 1 = 6 + 4 + 3 + 2 + 1,
5^2 = 12 + 6 + 4 + 3 = 12 + 6 + 4 + 2 + 1;
divisors(42)={1,2,3,6,7,14,21,42}: a(42)=#{k^2: 1<=k<=9}=9:
2^2 = 3+1,
3^2 = 7+2 = 6+3 = 6+2+1,
4^2 = 14+2 = 7+6+3 = 7+6+2+1,
5^2 = 21 + 3 + 1 = 14 + 7 + 3 + 1 = 14 + 6 + 3 + 2,
6^2 = 21 + 14 + 1 = 21 + 7 + 6 + 2,
7^2 = 42 + 7 = 42 + 6 + 1 = 21 + 14 + 7 + 6 + 1,
8^2 = 42 + 21 + 1 = 42 + 14 + 7 + 1 = 42 + 14 + 6 + 2,
9^2 = 42 + 21 + 14 + 3 + 1 = 42 + 21 + 7 + 6 + 3 + 2.
nonn
Reinhard Zumkeller (reinhard.zumkeller(AT)gmail.com), Feb 20 2010
approved