[go: up one dir, main page]

login
Revision History for A173312 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
#9 by Harvey P. Dale at Wed Feb 06 12:10:12 EST 2019
STATUS

editing

approved

#8 by Harvey P. Dale at Wed Feb 06 12:10:09 EST 2019
MATHEMATICA

Accumulate[Table[Product[(3k+1)!/(n+k)!, {k, 0, n-1}], {n, 0, 20}]] (* Harvey P. Dale, Feb 06 2019 *)

STATUS

approved

editing

#7 by Vaclav Kotesovec at Thu Oct 26 17:52:25 EDT 2017
STATUS

editing

approved

#6 by Vaclav Kotesovec at Thu Oct 26 17:52:15 EDT 2017
FORMULA

a(n) ~ Pi^(1/3) * exp(1/36) * 3^(3*n^2/2 - 7/36) / (A^(1/3) * Gamma(1/3)^(2/3) * n^(5/36) * 2^(2*n^2 - 5/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Oct 26 2017

#5 by Vaclav Kotesovec at Thu Oct 26 17:42:18 EDT 2017
FORMULA

a(n) = SUM[Sum_{i=0..n] } A005130(i) = SUM[Sum_{i=0..n]PRODUCT[} Product_{k=0..i-1} (3k+1)!/(i+k)!. [corrected by Vaclav Kotesovec, Oct 26 2017]

#4 by Vaclav Kotesovec at Thu Oct 26 17:41:00 EDT 2017
FORMULA

a(n) = SUM[i=0..n] A005130(i) = SUM[i=0..n]PRODUCT[k=0..i-1} (3k+1)!/(ni+k)!. [corrected by _Vaclav Kotesovec_, Oct 26 2017]

#3 by Vaclav Kotesovec at Thu Oct 26 17:40:05 EDT 2017
MATHEMATICA

Table[Sum[Product[(3 k + 1)!/(j + k)!, {k, 0, j - 1}], {j, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 26 2017 *)

STATUS

approved

editing

#2 by Russ Cox at Fri Mar 30 18:40:51 EDT 2012
AUTHOR

_Jonathan Vos Post (jvospost3(AT)gmail.com), _, Feb 16 2010

Discussion
Fri Mar 30
18:40
OEIS Server: https://oeis.org/edit/global/228
#1 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

Partial sums of A005130.

DATA

1, 2, 4, 11, 53, 482, 7918, 226266, 11076482, 922911942, 130457184642, 31226202037017, 12642538061714517, 8652026056359367017, 10004193381504526849017, 19539080428042781631746217

OFFSET

0,2

COMMENTS

Partial sums of Robbins numbers. Partial sums of the number of descending plane partitions whose parts do not exceed n. Partial sums of the number of n X n alternating sign matrices (ASM's). After 2, 11, 53, when is this partial sum again prime, as it is not again prime through a(32)?

FORMULA

a(n) = SUM[i=0..n] A005130(i) = SUM[i=0..n]PRODUCT[k=0..i-1} (3k+1)!/(n+k)!.

EXAMPLE

a(17) = 1 + 1 + 2 + 7 + 42 + 429 + 7436 + 218348 + 10850216 + 911835460 + 129534272700 + 31095744852375 + 12611311859677500 + 8639383518297652500 + 9995541355448167482000 + 19529076234661277104897200 + 64427185703425689356896743840 + 358869201916137601447486156417296.

KEYWORD

nonn

AUTHOR

Jonathan Vos Post (jvospost3(AT)gmail.com), Feb 16 2010

STATUS

approved