editing
approved
editing
approved
Accumulate[Table[Product[(3k+1)!/(n+k)!, {k, 0, n-1}], {n, 0, 20}]] (* Harvey P. Dale, Feb 06 2019 *)
approved
editing
editing
approved
a(n) ~ Pi^(1/3) * exp(1/36) * 3^(3*n^2/2 - 7/36) / (A^(1/3) * Gamma(1/3)^(2/3) * n^(5/36) * 2^(2*n^2 - 5/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Oct 26 2017
a(n) = SUM[Sum_{i=0..n] } A005130(i) = SUM[Sum_{i=0..n]PRODUCT[} Product_{k=0..i-1} (3k+1)!/(i+k)!. [corrected by Vaclav Kotesovec, Oct 26 2017]
a(n) = SUM[i=0..n] A005130(i) = SUM[i=0..n]PRODUCT[k=0..i-1} (3k+1)!/(ni+k)!. [corrected by _Vaclav Kotesovec_, Oct 26 2017]
Table[Sum[Product[(3 k + 1)!/(j + k)!, {k, 0, j - 1}], {j, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 26 2017 *)
approved
editing
_Jonathan Vos Post (jvospost3(AT)gmail.com), _, Feb 16 2010
Partial sums of A005130.
1, 2, 4, 11, 53, 482, 7918, 226266, 11076482, 922911942, 130457184642, 31226202037017, 12642538061714517, 8652026056359367017, 10004193381504526849017, 19539080428042781631746217
0,2
Partial sums of Robbins numbers. Partial sums of the number of descending plane partitions whose parts do not exceed n. Partial sums of the number of n X n alternating sign matrices (ASM's). After 2, 11, 53, when is this partial sum again prime, as it is not again prime through a(32)?
a(n) = SUM[i=0..n] A005130(i) = SUM[i=0..n]PRODUCT[k=0..i-1} (3k+1)!/(n+k)!.
a(17) = 1 + 1 + 2 + 7 + 42 + 429 + 7436 + 218348 + 10850216 + 911835460 + 129534272700 + 31095744852375 + 12611311859677500 + 8639383518297652500 + 9995541355448167482000 + 19529076234661277104897200 + 64427185703425689356896743840 + 358869201916137601447486156417296.
nonn
Jonathan Vos Post (jvospost3(AT)gmail.com), Feb 16 2010
approved