editing
approved
editing
approved
<a href="/index/Rec#order_37">Index entries for linear recurrences with constant coefficients</a>, signature (39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, -780).
approved
editing
_John Cannon (john(AT)maths.usyd.edu.au) _ and N. J. A. Sloane, Dec 03 2009
John Cannon (john(AT)maths.usyd.edu.au) and _N. J. A. Sloane (njas(AT)research.att.com), _, Dec 03 2009
The g.f. agrees with (1+t)/(1-40*t) for 37 terms, but after that it is different. That is, a(n) = 41*40^(n-1) for 1 <= n <= 36. [From Vincenzo Librandi (vincenzo.librandi(AT)tin.it), Dec 06 2009]
G,.f.: (t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 +
nonn,new
nonn
Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^37 = I.
1, 41, 1640, 65600, 2624000, 104960000, 4198400000, 167936000000, 6717440000000, 268697600000000, 10747904000000000, 429916160000000000, 17196646400000000000, 687865856000000000000, 27514634240000000000000
0,2
The initial terms coincide with those of A170760, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
The g.f. agrees with (1+t)/(1-40*t) for 37 terms, but after that it is different. That is, a(n) = 41*40^(n-1) for 1 <= n <= 36. [From Vincenzo Librandi (vincenzo.librandi(AT)tin.it), Dec 06 2009]
G,f.: (t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 +
2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 +
2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 +
2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 +
2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(780*t^37 - 39*t^36 - 39*t^35 -
39*t^34 - 39*t^33 - 39*t^32 - 39*t^31 - 39*t^30 - 39*t^29 - 39*t^28 -
39*t^27 - 39*t^26 - 39*t^25 - 39*t^24 - 39*t^23 - 39*t^22 - 39*t^21 -
39*t^20 - 39*t^19 - 39*t^18 - 39*t^17 - 39*t^16 - 39*t^15 - 39*t^14 -
39*t^13 - 39*t^12 - 39*t^11 - 39*t^10 - 39*t^9 - 39*t^8 - 39*t^7 -
39*t^6 - 39*t^5 - 39*t^4 - 39*t^3 - 39*t^2 - 39*t + 1)
nonn
John Cannon (john(AT)maths.usyd.edu.au) and N. J. A. Sloane (njas(AT)research.att.com), Dec 03 2009
approved