[go: up one dir, main page]

login
Revision History for A167787 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Triangle of z Transform coefficients from General Pascal [1,10,1} A142459 polynomials multiplied by factor 3^Floor[(2*k - 1)/3].
(history; published version)
#2 by Russ Cox at Fri Mar 30 17:34:35 EDT 2012
AUTHOR

_Roger L. Bagula (rlbagulatftn(AT)yahoo.com), _, Nov 12 2009

Discussion
Fri Mar 30
17:34
OEIS Server: https://oeis.org/edit/global/158
#1 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

Triangle of z Transform coefficients from General Pascal [1,10,1} A142459 polynomials multiplied by factor 3^Floor[(2*k - 1)/3].

DATA

0, 3, 3, 6, 9, 54, 54, 27, 324, 810, 540, 27, 432, 2322, 3780, 1890, 81, 810, 12150, 42120, 51030, 20412, 243, 3402, 27216, 272160, 697410, 673596, 224532, 243, 34020, 40824, 244944, 1786050, 3633336, 2918916, 833976, 729, 104976, 1583388, 1224720

OFFSET

0,2

COMMENTS

Row sums are:

{0, 3, 9, 117, 1701, 8451, 126603, 1898559, 9492309, 142383177, 2135743281...}

FORMULA

m=4;

A(n,k)= (m*n - m*k + 1)A(n - 1, k - 1} + (m*k - (m - 1))A(n - 1, k)

q(n,k)=InverseZTransform[x*Sum[a[[n, k]]*x^(k - 1), {k, 1, n}]/(x - 1)^n, x, k]

out_n,k=3^Floor[(2*k - 1)/3]*coefficients(q[n,k])

EXAMPLE

{0},

{3},

{3, 6},

{9, 54, 54},

{27, 324, 810, 540},

{27, 432, 2322, 3780, 1890},

{81, 810, 12150, 42120, 51030, 20412},

{243, 3402, 27216, 272160, 697410, 673596, 224532},

{243, 34020, 40824, 244944, 1786050, 3633336, 2918916, 833976},

{729, 104976, 1583388, 1224720, 5664330, 32332608, 54561276, 37528920, 9382230},

{2187, -5734314, 6009876, 53905176, 31689630, 117756828, 551675124, 795613104, 478493730, 106331940}

MATHEMATICA

m = 4; A[n_, 1] := 1; A[n_, n_] := 1

A[n_, k_] := (m*n - m*k + 1)A[n - 1, k - 1] + (m*k - (m - 1))A[n - 1, k]

a = Table[A[n, k], {n, 10}, {k, n}]

p[x_, n_] = x*Sum[a[[n, k]]*x^(k - 1), {k, 1, n}]/(x - 1)

b = Table[p[x, n], {n, 0, 10}]

Table[3^Floor[(2*k - 1)/3]*CoefficientList[ExpandAll[ InverseZTransform[b[[k]], x, n] /. UnitStep[ -1 + n] -> 1], n], {k, 1, Length[b]}]

CROSSREFS
KEYWORD

nonn,uned

AUTHOR

Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Nov 12 2009

STATUS

approved