proposed
approved
proposed
approved
editing
proposed
The fifth row of the ED2 array A167560.
G. C. Greubel, <a href="/A167562/b167562.txt">Table of n, a(n) for n = 1..1000</a>
<a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
a(n) = 5*n^4 + 10*n^3 + 67*n^2 + 14*n + 24.
GF(z) = G.f.: (24*z^4 - 48*z^3 + 144*z^2 - 120*z + 120)/(1-z)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - G. C. Greubel, Jun 16 2016
Table[5*n^4 + 10*n^3 + 67*n^2 + 14*n + 24, {n, 1, 100}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {120, 480, 1344, 3072, 6144}, 100] (* G. C. Greubel, Jun 16 2016 *)
approved
editing
_Johannes W. Meijer (meijgia(AT)hotmail.com), _, Nov 10 2009
The fifth row of the ED2 array A167560
120, 480, 1344, 3072, 6144, 11160, 18840, 30024, 45672, 66864, 94800, 130800, 176304, 232872, 302184, 386040, 486360, 605184, 744672, 907104, 1094880, 1310520, 1556664, 1836072, 2151624, 2506320, 2903280, 3345744, 3837072
1,1
a(n) = 5*n^4+10*n^3+67*n^2+14*n+24
GF(z) = (24*z^4-48*z^3+144*z^2-120*z+120)/(1-z)^5
Equals the fifth row of the ED2 array A167560.
easy,nonn
Johannes W. Meijer (meijgia(AT)hotmail.com), Nov 10 2009
approved