[go: up one dir, main page]

login
Revision History for A165940 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
G.f.: Sum_{n>=0} a(n)*x^n/2^(n^2+n) = exp( Sum_{n>=1} x^n/[n*2^(n^2)] ).
(history; published version)
#2 by Russ Cox at Fri Mar 30 18:37:18 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Oct 01 2009

Discussion
Fri Mar 30
18:37
OEIS Server: https://oeis.org/edit/global/213
#1 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

G.f.: Sum_{n>=0} a(n)*x^n/2^(n^2+n) = exp( Sum_{n>=1} x^n/[n*2^(n^2)] ).

DATA

1, 2, 10, 152, 7684, 1352096, 852120928, 1960591940480, 16697154282192928, 531801639623740649984, 63854080509077223292639744, 29089348119991257994736112048128

OFFSET

0,2

COMMENTS

Conjectured to consist entirely of integers.

EXAMPLE

G.f.: 1 + 2*x/2^2 + 10*x^2/2^6 + 152*x^3/2^12 + 7684*x^4/2^20 +...

= exp( x/2 + x^2/(2*2^4) + x^3/(3*2^9) + x^4/(4*2^16) +... ).

Evaluated at x=1:

Sum_{n>=0} a(n)/2^(n^2+n) = 1.7021716250154556344906565654972646...

PROG

(PARI) {a(n)=2^(n^2+n)*polcoeff(exp(sum(m=1, n+1, 2^(-m^2)*x^m/m)+x*O(x^n)), n)}

CROSSREFS

Cf. A155200.

KEYWORD

nonn

AUTHOR

Paul D. Hanna (pauldhanna(AT)juno.com), Oct 01 2009

STATUS

approved