[go: up one dir, main page]

login
Revision History for A165678 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Sixth right hand column of triangle A165674.
(history; published version)
#6 by Harvey P. Dale at Tue Jun 18 17:48:11 EDT 2024
STATUS

editing

approved

#5 by Harvey P. Dale at Tue Jun 18 17:48:09 EDT 2024
LINKS

<a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).

MATHEMATICA

LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1764, 8028, 24552, 60216, 127860, 245004}, 30] (* Harvey P. Dale, Jun 18 2024 *)

STATUS

approved

editing

#4 by Wesley Ivan Hurt at Sun Apr 17 20:27:07 EDT 2022
STATUS

editing

approved

#3 by Wesley Ivan Hurt at Sun Apr 17 20:26:28 EDT 2022
NAME

Sixth right hand column of triangle A165674.

FORMULA

a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).

a(n) = 120 + 548*n + 675*n^2 + 340*n^3 + 75*n^4 + 6*n^5.

Gf(z) = (0*z^7 - 120*z^6 + 744*z^5 - 1956*z^4 + 2844*z^3 - 2556*z^2 + 1764*z )/(z-1)^6.

STATUS

approved

editing

#2 by Russ Cox at Fri Mar 30 18:59:45 EDT 2012
AUTHOR

_Johannes W. Meijer (meijgia(AT)hotmail.com), _, Oct 05 2009

Discussion
Fri Mar 30
18:59
OEIS Server: https://oeis.org/edit/global/295
#1 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

Sixth right hand column of triangle A165674

DATA

1764, 8028, 24552, 60216, 127860, 245004, 434568, 725592, 1153956, 1763100, 2604744, 3739608, 5238132, 7181196, 9660840, 12780984, 16658148, 21422172, 27216936, 34201080, 42548724, 52450188, 64112712, 77761176, 93638820

OFFSET

1,1

COMMENTS

The recurrence relation leads to Pascal's triangle A007318, the a(n) formula to Wiggen's triangle A028421 and the o.g.f to Wood's polynomials A126671; see A165674.

FORMULA

a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6)

a(n) = 120 + 548*n + 675*n^2 + 340*n^3 + 75*n^4 + 6*n^5

Gf(z) = (0*z^7 - 120*z^6 + 744*z^5 - 1956*z^4 + 2844*z^3 - 2556*z^2 + 1764*z )/(z-1)^6

CROSSREFS
KEYWORD

easy,nonn

AUTHOR

Johannes W. Meijer (meijgia(AT)hotmail.com), Oct 05 2009

STATUS

approved