editing
approved
editing
approved
<a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1764, 8028, 24552, 60216, 127860, 245004}, 30] (* Harvey P. Dale, Jun 18 2024 *)
approved
editing
editing
approved
Sixth right hand column of triangle A165674.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = 120 + 548*n + 675*n^2 + 340*n^3 + 75*n^4 + 6*n^5.
Gf(z) = (0*z^7 - 120*z^6 + 744*z^5 - 1956*z^4 + 2844*z^3 - 2556*z^2 + 1764*z )/(z-1)^6.
approved
editing
_Johannes W. Meijer (meijgia(AT)hotmail.com), _, Oct 05 2009
Sixth right hand column of triangle A165674
1764, 8028, 24552, 60216, 127860, 245004, 434568, 725592, 1153956, 1763100, 2604744, 3739608, 5238132, 7181196, 9660840, 12780984, 16658148, 21422172, 27216936, 34201080, 42548724, 52450188, 64112712, 77761176, 93638820
1,1
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6)
a(n) = 120 + 548*n + 675*n^2 + 340*n^3 + 75*n^4 + 6*n^5
Gf(z) = (0*z^7 - 120*z^6 + 744*z^5 - 1956*z^4 + 2844*z^3 - 2556*z^2 + 1764*z )/(z-1)^6
easy,nonn
Johannes W. Meijer (meijgia(AT)hotmail.com), Oct 05 2009
approved