(MAGMAMagma) [p: p in PrimesUpTo(1500) | IsPrime(2*p^2+4*p+1)]; // Vincenzo Librandi, Apr 08 2013
(MAGMAMagma) [p: p in PrimesUpTo(1500) | IsPrime(2*p^2+4*p+1)]; // Vincenzo Librandi, Apr 08 2013
editing
approved
Select[Prime[Range[250]], PrimeQ[2#^2+4#+1]&] (* Harvey P. Dale, Sep 06 2022 *)
approved
editing
editing
approved
Let p in this sequence. If 2^h = 2*(p+1)/3; 2*p+1 = b (prime); and c=2*p^2+4*p+1 (prime) then p*b*2^h and c*2^h are amicable numbers. Ex. p=23, 2^h=16, c=1151, b=47 and 23*47*16 = 17296 and 1151*16= 18416; (17296,18416 are amicable numbers). - Vincenzo Librandi, Jun 09 2014
If a(k) is of the form 3·2^(h-1)-1 and 2*a(k)+1 is prime, then 2^h*a(k)*(2*a(k)+1) and 2^h*(2*a(k)^2+4*a(k)+1) are a pair of amicable numbers. - Vincenzo Librandi, Jun 09 2014
proposed
editing
editing
proposed
Conjecture: Let p in this sequence. If 2^h = 2*(p+1)/3; 2*p+1 = b (prime); and c=2*p^2+4*p+1 (prime) then p*b*2^h and c*2^h are amicable numbers. Ex. p=23, 2^h=16, c=1151, b=47 and 23*47*16 = 17296 and 1151*16= 18416; (17296,18416 are amicable numbers). - Vincenzo Librandi, Jun 09 2014
proposed
editing
editing
proposed
lst={}; Do[p=Prime@n; a=2*p^2+4*p+1; If[PrimeQ@a, AppendTo[lst, p]], {n, 7!}]; lst [From _(* _Vladimir Joseph Stephan Orlovsky_, Aug 12 2009] *)
proposed
editing
editing
proposed