[go: up one dir, main page]

login
Revision History for A163447 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
a(n) = 18*a(n-1) - 79*a(n-2) for n > 1; a(0) = 1, a(1) = 11.
(history; published version)
#7 by Charles R Greathouse IV at Thu Sep 08 08:45:46 EDT 2022
PROG

(MAGMAMagma) [ n le 2 select 10*n-9 else 18*Self(n-1)-79*Self(n-2): n in [1..18] ];

Discussion
Thu Sep 08
08:45
OEIS Server: https://oeis.org/edit/global/2944
#6 by Michel Marcus at Sat Dec 24 02:20:27 EST 2016
STATUS

reviewed

approved

#5 by Joerg Arndt at Sat Dec 24 01:45:23 EST 2016
STATUS

proposed

reviewed

#4 by G. C. Greubel at Fri Dec 23 22:42:42 EST 2016
STATUS

editing

proposed

#3 by G. C. Greubel at Fri Dec 23 22:42:33 EST 2016
NAME

a(n) = 18*a(n-1) - 79*a(n-2) for n > 1; a(0) = 1, a(1) = 11.

LINKS

G. C. Greubel, <a href="/A163447/b163447.txt">Table of n, a(n) for n = 0..975</a>

<a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (18,-79).

FORMULA

a(n) = ((1+sqrt(2))*(9+sqrt(2))^n + (1-sqrt(2))*(9-sqrt(2))^n)/2.

E.g.f.: exp(9*x)*( cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Dec 23 2016

MATHEMATICA

LinearRecurrence[{18, -79}, {1, 11}, 50] (* G. C. Greubel, Dec 23 2016 *)

PROG

(PARI) Vec((1-7*x)/(1-18*x+79*x^2) + O(x^50)) \\ G. C. Greubel, Dec 23 2016

STATUS

approved

editing

#2 by Russ Cox at Fri Mar 30 17:28:03 EDT 2012
AUTHOR

_Klaus Brockhaus (klaus-brockhaus(AT)t-online.de), _, Jul 27 2009

Discussion
Fri Mar 30
17:28
OEIS Server: https://oeis.org/edit/global/145
#1 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

a(n) = 18*a(n-1)-79*a(n-2) for n > 1; a(0) = 1, a(1) = 11.

DATA

1, 11, 119, 1273, 13513, 142667, 1500479, 15737929, 164744881, 1722111467, 17983160807, 187650088633, 1957031891641, 20402217047531, 212634387415919, 2215643826731593, 23083472275311073, 240466638643803467

OFFSET

0,2

COMMENTS

Binomial transform of A163446. Inverse binomial transform of A163448.

FORMULA

a(n) = ((1+sqrt(2))*(9+sqrt(2))^n+(1-sqrt(2))*(9-sqrt(2))^n)/2.

G.f.: (1-7*x)/(1-18*x+79*x^2).

PROG

(MAGMA) [ n le 2 select 10*n-9 else 18*Self(n-1)-79*Self(n-2): n in [1..18] ];

CROSSREFS
KEYWORD

nonn

AUTHOR

Klaus Brockhaus (klaus-brockhaus(AT)t-online.de), Jul 27 2009

STATUS

approved