reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
From Amiram Eldar, Feb 25 2023: (Start)
Sum_{n>=2} 1/a(n) = 8*log(2)/63 + 1166/19845.
Sum_{n>=2} (-1)^n/a(n) = (32*log(2) - 2*Pi - 3566/315)/63. (End)
approved
editing
(MAGMAMagma) [(2*n^3 + 5*n^2 - 7*n)/2 : n in [1..50]]; // Wesley Ivan Hurt, May 07 2021
editing
approved
(MAGMA) [(2*n^3 + 5*n^2 - 7*n)/2 : n in [1..50]]; // Wesley Ivan Hurt, May 07 2021
approved
editing
proposed
approved
editing
proposed
a(n) = (2n2*n^3 +5n 5*n^2 -7n 7*n)/2.
Row sums from A155724: a(n) = sumSum_{m=1..n} (2*m*n + m + n - 4, m=1..n).
From Vincenzo Librandi, Mar 04 2012: (Start)
G.f.: x^2*(11 - 5*x)/(1-x)^4. - Vincenzo Librandi, Mar 04 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Mar 04 2012(End)
CoefficientList[Series[x*(11-5*x)/(1-x)^4, {x, 0, 40}], x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 11, 39, 90}, 50](* _Vincenzo Librandi, _, Mar 04 2012 *)
New name from _Vincenzo Librandi, _, Mar 04 2012
approved
editing