(MAGMAMagma) [Factorial(2*n)*Factorial(2*n+1)/Factorial(n): n in [0..20]]; // Vincenzo Librandi, Jul 06 2015
(MAGMAMagma) [Factorial(2*n)*Factorial(2*n+1)/Factorial(n): n in [0..20]]; // Vincenzo Librandi, Jul 06 2015
editing
approved
W(x)=1/2*(-1/2*Pi*x^(1/2)*hypergeom([],[1/2, 3/2],-1/16*x)+Pi^(1/2)-1/16*Pi^(1/2)*x*sum((-1)^(2*j)* (-Psi(3/2+j)+Pi*tan(Pi*j)-Psi(2+j)-Psi(1+j)-4*lnlog(2)+lnlog(x))*2^(-4*j)* (x^j)*sec(Pi*j)*2^(2*j)/(1/2+j)/GAMMA(1+2*j)/GAMMA(2+j), j = 0..infinity))/(x^(1/2)*Pi);
approved
editing
proposed
approved
editing
proposed
1, 12, 1440, 604800, 609638400, 1207084032000, 4142712397824000, 22619209692119040000, 184572751087691366400000, 2146211949647675208499200000, 34253542716376896327647232000000, 727956289808441800755158974464000000, 20091593598712993700842387695206400000000
(MAGMA) [Factorial(2*n)*Factorial(2*n+1)/Factorial(n): n in [0..20]]; // Vincenzo Librandi, Jul 06 2015
proposed
editing
editing
proposed
Integral representation as n-th moment of a positive function W(x) expressed in terms of Meijer's G-function on the positive axis, in Maple notation: a(n)= int(x^n*W(x),x=0..infinity)= int(x^n*(1/2)*MeijerG([[], []], [[1, 1/2, 0], []], (1/16)*x) /(sqrt(x)*Pi),x=0..infinity), n=0,1... . Explicit form of the function W(x) is
Explicit form of the function W(x) is
W(x)=1/2*(-1/2*Pi*x^(1/2)*hypergeom([],[1/2, 3/2],-1/16*x)+Pi^(1/2)-1/16*Pi^(1/2)*x*sum((-1)^(2*j)* (-Psi(3/2+j)+Pi*tan(Pi*j)-Psi(2+j)-Psi(1+j)-4*ln(2)+ln(x))*2^(-4*j)* (x^j)*sec(Pi*j)*2^(2*j)/(1/2+j
(x^j)*sec(Pi*j)*2^(2*j)/(1/2+j)/GAMMA(1+2*j)/GAMMA(2+j),
j = 0..infinity))/(x^(1/2)*Pi);
proposed
editing
editing
proposed
a(n) = (2*n)!*(2*n+1)!/n! = n!*A000909(n), n=0,1...
Integral representation as n-th moment of a positive function W(x) expressed in terms of Meijer's G-function on the positive axis, in Maple notation: a(n)= int(x^n*W(x),x=0..infinity)= int(x^n*(1/2)*MeijerG([[], []], [[1, 1/2, 0], []], (1/16)*x) /(sqrt(x)*Pi),x=0..infinity), n=0,1... . Explicit form of the function W(x) is
expressed in terms of Meijer's G-function on the positive axis,
in Maple notation: a(n)= int(x^n*W(x),x=0..infinity)=
intW(x)=1/2*(-1/2*Pi*x^n*(1/2)*MeijerGhypergeom([[], []1/2, 3/2], [[-1, /16*x)+Pi^(1/2, 0], []], ()-1/16*Pi^(1/2)*x*sum((-1)^(2*j)* (-Psi(3/2+j)+Pi*tan(Pi*j)-Psi(2+j)-Psi(1+j)-4*ln(2)+ln(x))*2^(-4*j)*
/(sqrt(x)*Pi),x=0..infinity), n=0,1... . Explicit form of the function W(x) is :
W(x)=1/2*(-1/2*Pi*x^(1/2)*hypergeom([],[1/2, 3/2],-1/16*x)+Pi^(1/2)-1/16*Pi^(1/2)*x*sum((-1)^(2*j)*
(-Psi(3/2+j)+Pi*tan(Pi*j)-Psi(2+j)-Psi(1+j)-4*ln(2)+ln(x))*2^(-4*j)*
Hypergeometric generating function: sum(a(n)*x^n/(n!)^4, n=0..infinity)= -2*EllipticE(4*sqrt(x))/((16*x-1)*Pi).
-2*EllipticE(4*sqrt(x))/((16*x-1)*Pi)
approved
editing